

Modulkatalog für den Studiengang Energietechnik Bachelor (PO 2024) im Wintersemester 2024/2025

Fakultät Elektrotechnik und Informatik Leibniz Universität Hannover

Stand: 19.09.2024

1.1. Kompetenzbereich Grundlagen	5
Grundlagen der Elektrotechnik: Elektrische und magnetische Felder	6
Grundlagen der Elektrotechnik: Elektrische und magnetische Felder	6
Grundlagen der Elektrotechnik: Gleich- und Wechselstromnetzwerke / Grundlagenlabor I	
Grundlagen der Elektrotechnik: Gleich- und Wechselstromnetzwerke / Grundlagenlabo	or I 7
Grundlagen der Elektrotechnik: Spezielle Netzwerktheorie/ Grundlagenlabor II	9
Grundlagen der Elektrotechnik: Spezielle Netzwerktheorie / Grundlagenlabor II	
Grundlagen der Mess- und Regelungstechnik	11
Grundlagen der elektrischen Messtechnik	
Regelungstechnik I	
Grundlagen der Technischen Mechanik I	15
Grundlagen der Technischen Mechanik I	
Grundlagen der Technischen Mechanik II	
Grundlagen der Technischen Mechanik II	
Grundlagen der elektromagnetischen Energiewandlung	
Grundlagen der elektromagnetischen Energiewandlung	
Konstruktion und Werkstoffe	
Grundlagen der Werkstoffkunde	20
Konstruktionslehre I	
Mathematik für die Ingenieurwissenschaften I	23
Mathematik für die Ingenieurwissenschaften I	
Mathematik für die Ingenieurwissenschaften II	
Mathematik für die Ingenieurwissenschaften II	
Mathematik für die Ingenieurwissenschaften III - Numerik	27
Mathematik für die Ingenieurwissenschaften III - Numerik	
Programmieren für die Ingenieurwissenschaften	29
Grundzüge der Informatik und Programmierung	29
Thermodynamik I	
Thermodynamik I	31
1.2. Kompetenzbereich Einführung und Schlüsselkompetenzen	33
Aspekte der Energiewende	34
Aspekte der Energiewende	34
Bachelorprojekt Energietechnik	
Bachelorprojekt Energietechnik - Elektrische Energiespeichersysteme	
Bachelorprojekt Energietechnik – Elektrische Energieversorgung	37
Bachelorprojekt Energietechnik - Elektrische Maschinen und Antriebssysteme	38
Bachelorprojekt Energietechnik - Elektroprozesstechnik	
Bachelorprojekt Energietechnik - Hochspannungstechnik und Asset Management	40
Bachelorprojekt Energietechnik - Leistungselektronik und Antriebsregelung	
Bachelorprojekt Energietechnik - Technische Verbrennung	42
Bachelorprojekt Energietechnik - Thermodynamik	
Bachelorprojekt Energietechnik - Turbomaschinen und Fluid-Dynamik	44
Projekt Energy Technology - Elektroprozesstechnik	
Studieneinstiegsmodul	
Studieneinstiegsmodul (1/4): Mathematische Methoden der Elektrotechnik	46
Studieneinstiegsmodul (2/4): Ringvorlesung	
Studieneinstiegsmodul (3/4): Orientierungsblock	49

Studieneinstiegsmodul (4/4): Technisches Projekt	50
Studium Generale Energietechnik (Bachelor)	51
Einführung in das Recht für Ingenieure	51
Erstsemester-Fahrt	52
Geschichte der Elektrotechnik und Informationstechnik	53
Grundlagen des wissenschaftlichen Schreibens	55
Patentrecht für die Ingenieurspraxis	57
Studium Generale – Lehrveranstaltungen aus dem Lehrangebot der LUH	
Systeme zur zukünftigen Energieoptimierung und -vermarktung	60
Technikrecht	
Transformation des Energiesystems	63
Tutorium: Elektrorennwagen HorsePower I	
1.3. Kompetenzbereich Energietechnische Grundkompezenten	66
Energietechnische Grundkompetenzen	67
Elektrische Energiespeichersysteme	67
Elektrische Energieversorgung I	69
Hochspannungstechnik I	71
Leistungselektronik l	73
Nachhaltige Verbrennungstechnik	75
Strömungsmechanik	77
Thermodynamik II	79
Wärmeübertragung	81
1.4. Kompetenzbereich Gesellschaft, Wirtschaft, Recht	83
Einführung in das deutsche Energie- und Klimarecht	84
Einführung in das deutsche Energie- und Klimarecht	84
Ethische Aspekte des Ingenieurberufs	86
Ethische Aspekte des Ingenieurberufs	86
Grundlagen der elektrischen Energiewirtschaft	87
Grundlagen der elektrischen Energiewirtschaft	87
1.5. Kompetenzbereich Allgemeine Energietechnik	88
Allgemeine Energietechnik	89
Batteriespeichersysteme	
Brennstoffzellen und Wasserelektrolyse	91
Elektrische Antriebssysteme	93
Elektrische Energiespeichersysteme	95
Elektrische Energieversorgung l	97
Elektrische Energieversorgung II	99
Elektrothermische Verfahren	101
Gemisch- und Prozessthermodynamik	102
Grundlagen der Turbomaschinen	
Hochspannungstechnik I	106
Hochspannungstechnik II	108
Industrielle Elektrowärme	109
Leistungselektronik l	110
Leistungselektronik II	112
Nachhaltige Verbrennungstechnik	114

Nutzung von Solarenergie	116
Strömungsmechanik	117
Thermodynamik II	119
Verbrennungsmotoren I	
Windenergietechnik I	123
Wärmepumpen und Kälteanlagen	125
Wärmeübertragung	127
1.6. Kompetenzbereich Effiziente Energiewandlung und Nutzung	129
Effiziente Energiewandlung und Nutzung	130
Elektrische Antriebssysteme	130
Elektrische Energiespeichersysteme	
Elektrothermische Verfahren	134
Grundlagen der Turbomaschinen	135
Leistungselektronik l	137
Leistungselektronik II	139
Strömungsmechanik	141
Verbrennungsmotoren I	
1.7. Kompetenzbereich Regenerative Energiesysteme	
Regenerative Energiesysteme	
Batteriespeichersysteme	
Elektrische Energiespeichersysteme	
Elektrische Energieversorgung l	
Elektrische Energieversorgung II	
Hochspannungstechnik I	
Hochspannungstechnik II	
Nutzung von Solarenergie	
Windenergietechnik I	158
1.8. Kompetenzbereich Transformation industrieller Prozesse	
Transformation industrieller Prozesse	
Brennstoffzellen und Wasserelektrolyse	
Elektrothermische Verfahren	
Gemisch- und Prozessthermodynamik	
Industrielle Elektrowärme	
Nachhaltige Verbrennungstechnik	
Strömungsmechanik	
Thermodynamik II	
Wärmepumpen und Kälteanlagen	
Wärmeübertragung	
1.9. Kompetenzbereich Bachelorarbeit	
Praktikum	
- Vorpraktikum	
Bachelorarbeit mit Kolloquium	
Bachelorarbeit [ETIT/EN/MT]	
Kolloquium zur Bachelorarbeit [EN/MT]	181

1.1. Kompetenzbereich Grundlagen

Englischer Titel: Basics of power engineering

Information zum: 80 LP, P

Grundlagen der l	Elektrotechnik: Ele	ektrische und	Sprache
magnetische Feld	der		Deutsch
Modultitel englisch			Kompetenzbereich
Basics of Electrical Eng	ineering: Electrical and	Magnetical Fields	Kompetenzbereich Grundlagen
Angebot im WS 2024	1/25		Modultyp
nur Prüfung			Pflicht
Prüfungsform			Prüfungsbewertung
Klausur (150 min)			benotet
Studienleistung	Studienleistung		Empfohlenes Fachsemester
1		-	
Studentische Arbeitsleistung		Frequenz	
240 h			jährlich
SWS	LP (ECTS)	Dozent/in	Prüfer/in
3 V + 3 Ü	8 LP		Zimmermann
Schwerpunkt / Micro	-Degree	Bei Seminar: Semes	terthema (dt/en)
keine			
Organisationseinheit		Modulverantwortlid	her
Institut für Grundlagen der Elektrotechnik		GEML	
und Messtechnik			

Webseite

https://www.geml.uni-hannover.de/de/lehre/grundlagenstudium/

Qualifikationsziele

Die Studierenden sollen Probleme zu den unten genannten Gebieten verstehen, qualitativ und quantitativ analysieren und mit angepassten Methoden lösen können.

Inhalt

Mathematische Begriffe der Feldtheorie, Elektrisches Feld, Strömungsfeld, magnetisches Feld

Teilnahmevoraussetzungen und -empfehlungen

keine

Literatur

H. Haase, H. Garbe, H. Gerth: Grundlagen der Elektrotechnik (Lehrbuch), SchöneworthVerlag Hannover, 2005

H. Haase, H. Garbe,: Grundlagen der Elektrotechnik – Übungsaufgaben mit Lösungen, SchöneworthVerlag, Hannover, 2002

H. Haase, H. Garbe: Formelsammlung Grundlagen der Elektrotechnik, Institutsdruckschrift 2002

Weitere Angaben

Titel bis SS 17: Grundlagen der Elektrotechnik II

Es finden wöchentliche Gruppenübungen mit studentischen Tutoren statt.

Grundlagen der Elektrotechnik: Gleich- und		Sprache	
Wechselstromnetzwerke / Grundlagenlabor I			Deutsch
Modultitel englisch	1		Kompetenzbereich
Basics of Electrical E	ngineering: DC and AC N	etworks / Laboratory of	Kompetenzbereich Grundlagen
Electrical Engineerin	g l		
Angebot im WS 20	24/25		Modultyp
Vorlesung und Prüfu	ng		Pflicht
Prüfungsform			Prüfungsbewertung
Klausur (150 min)			benotet
Studienleistung		Empfohlenes Fachsemester	
1		-	
Studentische Arbeitsleistung		Frequenz	
240 h			jedes Semester
SWS	LP (ECTS)	Dozent/in	Prüfer/in
2 V + 3 Ü + 2 L	8 LP	Zimmermann	Zimmermann, Werle
Schwerpunkt / Mic	ro-Degree	Bei Seminar: Semes	terthema (dt/en)
keine			
Organisationseinheit		Modulverantwortlic	her
Institut für Grundlagen der Elektrotechnik		GEML	
und Messtechnik			

Webseite

_

Qualifikationsziele

Die Studierenden sollen Probleme zu den unten genannten Gebieten verstehen, qualitativ und quantitativ analysieren und mit angepassten Methoden lösen können. In der Laborübung sollen die Studierenden theoretische und abstrakte elektrotechnische Arbeitsweisen praktisch umsetzen können und den grundlegenden Umgang mit einfachen elektrotechnischen Geräten erlernen.

Inhalt

Vorlesung / Übung:

Elektrotechnische Grundbegriffe, Gleichstromnetzwerke, Wechselstromnetzwerke, Ortskurven Laborübung:

Versuche zu Gleichstrom und Gleichfeldern

Versuch 1: Strom-/Spannungsmessungen

Versuch 2: Untersuchung von Gleichstrom-Netzwerken

Versuch 3: Aufnahme von Kennlinien elektrischer Bauelemente

Versuch 4: Messungen an einfachen Wechselstromkreisen

Teilnahmevoraussetzungen und -empfehlungen

für die Vorlesung: keine

für die Laborübung: Vorlesungsstoff "Grundlagen der Elektrotechnik: Gleich- und

Wechselstromnetzwerke".

Die Versuchsvorbereitung erfolgt anhand des Laborskripts!

Literatur

Vorlesung: H. Haase, H. Garbe, H. Gerth: Grundlagen der Elektrotechnik (Lehrbuch), SchöneworthVerlag,

Hannover 2005

H. Haase, H. Garbe,: Grundlagen der Elektrotechnik Übungsaufgaben mit Lösungen, SchöneworthVerlag, Hannover 2002

Stand: 19.09.2024

H. Haase, H. Garbe,: Formelsammlung Grundlagen der Elektrotechnik, Institutsdruckschrift 2002 Laborübung: Vgl. Vorlesung "Grundlagen der Elektrotechnik: Gleich- und Wechselstromnetzwerke, zusätzlich Laborskript.

Weitere Angaben

Modul besteht aus "Grundlagen der Elektrotechnik: Gleich und Wechselstromnetzwerke (6 LP/PNr. 11) und Elektrotechnisches Grundlagenlabor I (2 LP/PNr. 121)

Das Modul besteht aus "Grundlagen der Elektrotechnik: Gleich und Wechselstromnetzwerke (6 LP/PNr. 11), welche im Wintesemester gelesen wird und aus "Elektrotechnisches Grundlagenlabor I" (2 LP/PNr. 121), welches im Sommer absolviert wird.

Vorse

Die Anmeldung zum "Elektrotechnischen Grundlagelabor I" ist zu Beginn des Sommersemesters erforderlich! Nach der Anmeldung werden festgelegte Versuche an bestimmten Terminen absolviert. Der Anmeldetermin wird in der gleichnamigen Stud.IP Veranstaltung bekanntgegeben.

Übersicht der Vorlesung / Übung: http://www.geml.uni-hannover.de/et1.html
br>

Informationen zum Labor unter https://www.ifes.uni-hannover.de/de/si/lehre/laborpraktika/

Grundlagen der Elektrotechnik: Spezielle		Sprache		
Netzwerktheorie / Grundlagenlabor II			Deutsch	
Modultitel englisch Basics of Electrical Engineering: Special Aspects of Network Theory / Laboratory of Electrical Engineering II		Kompetenzbereich Kompetenzbereich Grundlagen		
Angebot im WS 20: Vorlesung und Prüfu			Modultyp Pflicht	
Prüfungsform Klausur (60 min)		Prüfungsbewertung benotet		
Studienleistung \		Empfohlenes Fachsemester		
Studentische Arbeitsleistung 180 h			Frequenz jährlich	
SWS	LP (ECTS)	Dozent/in	Prüfer/in	
1 V + 1 Ü + 3 L	6 LP	Kuhnke, Zimmermann	Zimmermann, Werle	
Schwerpunkt / Micro-Degree keine		Bei Seminar: Seme	sterthema (dt/en)	
Organisationseinheit Institut für Grundlagen der Elektrotechnik und Messtechnik		Modulverantwortli GEML	cher	

Webseite

http://www.geml.uni-hannover.de/et3.html und https://www.ifes.uni-hannover.de/de/si/lehre/laborpraktika/

Qualifikationsziele

Die Studierenden sollen Probleme zu den Gebieten Drehstromnetzwerke, Nichtlineare Netzwerke und Einschaltvorgänge in linearen und nichtlinearen Netzwerken analysieren und mit Problem angepassten Methoden lösen können.

In der Laborübung sollen die Studierenden theoretische und abstrakte elektrotechnische Arbeitsweisen praktisch umsetzen können und den grundlegenden Umgang mit einfachen elektrotechnischen Geräten erlernen.

Inhalt

Vorlesung / Übung:

Drehstromnetzwerke; Nichtlineare Netzwerke; Einschaltvorgänge in linearen und nichtlinearen Netzwerken

Laborübung:

Versuche zu elektromagnetischen Feldern, Wechsel- und Drehstrom

Versuch 1: Feldmessungen;

Versuch 2: Untersuchung von Schwingkreisen;

Versuch 3: Leistungmessungen bei Wechselstrom;

Versuch 4: Untersuchung von Dreiphasenwechselstromschaltungen

Zusätzlich zu den üblichen Laborprotokollen muss zu einem Versuch ein "technischer Bericht" angefertigt werden.

Teilnahmevoraussetzungen und -empfehlungen

für die Vorlesung und Laborübung:

Vorlesungsstoff "Grundlagen der Elektrotechnik: Gleich- und Wechselstromnetzwerke" und "Grundlagen der Elektrotechnik: Elektrische und magnetische Felder"

Stand: 19.09.2024

Die Versuchsvorbereitung erfolgt anhand des Laborskripts!

Literatur

H. Haase, H. Garbe, H. Gerth: Grundlagen der Elektrotechnik, SchöneworthVerlag, Hannover, 2005 H. Haase, H. Garbe,: Grundlagen der Elektrotechnik Übungsaufgaben mit Lösungen, SchöneworthVerlag, Hannover, 2002

Laborskript

Weitere Angaben

Das Modul besteht aus "Grundlagen der Elektrotechnik: Spezielle Netzwerktheorie" (3 LP/PNr. 13) und "Elektrotechnisches Grundlagenlabor II" (3 LP/PNr. 122)

Das Modul besteht aus "Grundlagen der Elektrotechnik: Spezielle Netzwerktheorie" (3 LP/PNr. 13) und "Elektrotechnisches Grundlagenlabor II" (3 LP/PNr. 122)

Für die Laborübung ist eine Anmeldung zu Beginn des Wintersemesters erforderlich! Nach der Anmeldung werden festgelegte Versuche an bestimmten Terminen absolviert. Der Anmeldetermin ist der geleichnamigen Stud.IP Veranstaltung zu entnehmen.

br>

Die Teilnahme am Elektrotechnischen Grundlagenlabor II ist grundsätzlich nur möglich wenn das Labor I vollständig anerkannt und mindestens 30 Leistungspunkte im Studiengang erworben wurden.

Grundlagen der elektrischen Messtechnik		Sprache Deutsch	
Modultitel englisch Basics of Electrical Measurement Technology		Kompetenzbereich Kompetenzbereich Grundlagen	
Angebot im WS 2024 nur Prüfung	Angebot im WS 2024/25		Modultyp Pflicht
Prüfungsform Klausur (60 min)			Prüfungsbewertung unbenotet
Studienleistung Studienleistung nach Bekanntgabe durch Veranstalter		Empfohlenes Fachsemester	
Studentische Arbeitsleistung Gesamt: 60 Stunden; davon Präsenz: 60 Stunden; Selbststudium: 0 Stunden		en; davon	Frequenz jährlich
SWS	LP (ECTS)	Dozent/in	Prüfer/in
2 V + 2 Ü	2 LP		Bunert
Schwerpunkt / Micro-Degree keine		Bei Seminar: Semeste	erthema (dt/en)
Organisationseinheit Institut für Grundlagen der Elektrotechnik und Messtechnik, Institut für Grundlagen der Elektrotechnik und Messtechnik		Modulverantwortlich GEML, Garbe	er

Webseite

https://www.geml.uni-hannover.de/de/lehre/grundlagenstudium/

Qualifikationsziele

Die Studierenden kennen die grundsätzlichen Methoden- und Verfahren auf dem Gebiet der analogen und digitalen Messtechnik und können sie anwenden.

Inhalt

Einführung in die elektrische Messtechnik (Grundbegriffe und Definitionen; Messprinzipien und - verfahren; Normale, Gesetze, Normen, Vorschriften, Organisationen, Einheiten; Bereiche, Kenngrößen, Eigenschaften von Messeinrichtungen; Messfehler, Fehlergrenzen, Fehlerklassen, Statistik)

Dynamisches Verhalten von elektromechanischen und digitalen Messgeräten (Drehspulmesswerk, Elektrodynamisches Messwerk, dyn. Verhalten elektromechanischer Messgeräte; Aufbau und Frequenzverhalten von digitalen Messgeräten)

Messgrößenumformung und -wandler (Spannungs-Strom-Umformung, Frequenzabhängigkeit, Leistungs-Strom-Umformung; Messbereichsanpassung/-erweiterung; Transformatorische Wandler; Stromzangen; Gleichrichter, Formfaktor, Umrechnung; Wichtige elektronische Messschaltungen mit Operationsverstärkern)

Einführung in die digitale Messtechnik (Abtastung, Nyquist-Kriterium, Sample-Hold-Schaltungen; DA-Umsetzer, AD-Umsetzer; Fehler bei DA-/AD-Umsetzung; Zeit- und Frequenzmessung)

Messung und Darstellung schnell veränderlicher Signale (Oszilloskop: Eingangsstufe, Interleaving,

Signalrekonstruktion, Tastköpfe, Lissajous-Figuren, Augendiagramm; Spektrumanalysator: Aufbau und Funktionsweise)

Stand: 19.09.2024

Teilnahmevoraussetzungen und -empfehlungen

Elektrische und magnetische Felder, Gleich- und Wechselstromnetzwerke

Literatur

Lerch: Elektrische Messtechnik; Springer-Verlag. Mühl: Elektrische Messtechnik; Springer Vieweg. Schrüfer: Elektrische Messtechnik; Hanser-Verlag.

Kienke, Kronmüller, Eger: Messtechnik, Systemtheorie für Elektrotechniker; Springer-Verlag.

Weitere Angaben

Dozenten/Prüfer wechseln jährlich.

Für den Bachelorstudiengang Energietechnik (PO2024) ist das Bestehen der Hausübung "Grundlagen der elektrischen Messtechnik" verpflichtend.

Übungsbegleitend werden praktische Messtechnik-Versuche von den Studierenden durchgeführt. Online-Hausübung: Für Studierende aus dem Studiengang "Energietechnik" ist als Leistungsnachweis in der Mitte des Sommersemesters die übungsbegleitende Online-Hausübung zwingend zu bestehen. Für alle Studierenden der Elektrotechnik und Informationstechnik und der meisten anderen Studiengänge ist diese Hausübung im Rahmen der Hörsaalübung vorgesehen.

Regelungstechni	k I		Sprache
			Deutsch
Modultitel englisch			Kompetenzbereich
Automatic Control I			Kompetenzbereich Grundlagen
Angebot im WS 2024	4/25		Modultyp
Vorlesung und Prüfung	g		Pflicht
Prüfungsform			Prüfungsbewertung
Klausur (120 min)			benotet
Studienleistung			Empfohlenes Fachsemester
1, WiSe			-
Studentische Arbeitsleistung			Frequenz
Gesamt: 120 Stunden; davon Präsenz: 60 Stund		Stunden; davon	jährlich
Selbststudium: 60 Stu	nden		
SWS	LP (ECTS)	Dozent/in	Prüfer/in
2 V + 1 Ü + 1 L	4 LP	Müller	Müller
Schwerpunkt / Micro	–Degree	Bei Seminar: Se	mesterthema (dt/en)
keine			
Organisationseinheit		Modulverantwo	rtlicher
Institut für Regelungstechnik, Institut für		IRT, Lilge	
Regelungstechnik, FG	Regelungstechnik		

Webseite

https://www.irt.uni-hannover.de/de/studium/rt1

Qualifikationsziele

Die Studierenden kennen die Grundlagen der zeitkontinuierlichen Regelungstechnik, beginnend mit der Modellierung und Linearisierung von Systemen über die Stabilitätsprüfung bis hin zur Regelkreisanalyse im Bodediagramm, in Ortskurven sowie der Wurzelortskurve.

Inhalt

- Behandlung von zeitkontinuierlichen Regelungssystemen im Zeit- und Bildbereich
- Dynamisches Verhalten von Regelkreisgliedern
- Hurwitz-Kriterium zur Stabilitätsprüfung
- Darstellung dynamischer Systeme im Zustandsraum
- Darstellung von Frequenzgängen in der Gaußschen Zahlenebene und im Bodediagramm
- Nyguist-Kriterium
- Wurzelortskurvenverfahren
- Phasen- und Amplitutdenreserve, Kompensationsglieder
- Erweiterte PID-Regelung und Regelkreisstrukturen

Teilnahmevoraussetzungen und -empfehlungen

Grundlagen der Elektrotechnik und der technischen Mechanik (aus dem Grundstudium)

Literatur

- Folien zur Vorlesung
- Åström, K.J. und T. Hägglund: PID Controllers, Theory, Design, and Tuning. International Society for Measurement and Control, Research Triangle Park, NC, 2. Auflage, 1995.
- Dorf, Richard C. und Robert H. Bishop: Moderne Regelungssysteme. Pearson-Studium, 2005
- Föllinger, O.: Regelungstechnik. Hüthig Buch Verlag, Heidelberg, 8. aufl. Auflage, 1994.

- Horn, M. und N. Dourdoumas: Regelungstechnik.

Pearson-Studium, München, 2004.

- Lunze, Jan: Regelungstechnik 1: Systemtheoretische Grundlagen, Analyse und Entwurf einschleifiger Regelungen.

Stand: 19.09.2024

Springer, Berlin Heidelberg, 7. Auflage, 2008.

- Unbehauen, H.: Regelungstechnik I. Vieweg+Teubner Verlag, 2007.

Weitere Angaben

Für den Bachelorstudiengang Energietechnik (PO2024) ist das Bestehen der Klausur "Regelungstechnik I" verpflichtend. Es wird empfohlen, die Studienleistung zu absolvieren, diese ist jedoch nicht verpflichtend. Für PO2017/5LP ist über den 1L-Laboranteil eine Studienleistung nachzuweisen.

Grundlagen der Technischen Mechanik I		Sprache	
			Deutsch
Modultitel englisch			Kompetenzbereich
Fundamentals of Me	chanics I		Kompetenzbereich Grundlagen
Angebot im WS 20	24/25		Modultyp
Vorlesung und Prüfu	ng		Pflicht
Prüfungsform			Prüfungsbewertung
Klausur (90 min)			benotet
Studienleistung		Empfohlenes Fachsemester	
		-	
Studentische Arbeitsleistung		Frequenz	
150 h			jährlich
SWS	LP (ECTS)	Dozent/in	Prüfer/in
2 V + 3 Ü	5 LP	Wallaschek	Wallaschek
Schwerpunkt / Micro-Degree Bei Seminar: Sen		nesterthema (dt/en)	
keine			
Organisationseinheit Mod		Modulverantwor	tlicher
		Junker	

Webseite

https://www.ids.uni-hannover.de/en/lehre/vorlesungen/wintersemester/grundlagen-der-technischen-mechanik-i

Qualifikationsziele

Nach erfolgreicher Absolvierung des Moduls sind die Studierenden in der Lage, selbstständig Problemstellungen der Statik und Festigkeitslehre zu analysieren und zu lö sen, insbesondere

- das Schnittprinzip und das darauf aufbauende Freikö rperbild zu erläutern,
- Gleichgewichtsbedingungen für starre Kö rper zu formulieren,
- Lagerreaktionen analytisch zu berechnen,
- statisch bestimmte Fachwerke zu analysieren und die Schnittgrößen in Balken und Rahmen zu bestimmen,
- die Verformung einfacher mechanischer Bauteile infolge verschiedener Beans

Inhalt

- Statik starrer Körper, Kräfte und Momente, Ä guivalenz von Kräftegruppen
- Newton'sche Gesetze, Axiom vom Kräfteparallelogramm
- Geichgewichtsbedingungen
- Schwerpunkt starrer Körper
- Haftung und Reibung, Coulomb'sches Gesetzt, Seilreibung und -haftung
- Ebene Fachwerke, ebene Balken und Rahmen, Schnittgrößen
- Arbeit, potentielle Energie und Stabilität, Prinzip der virtuellen Arbeit
- elementare Beanspruchungsarten, Spannungen und Dehnungen
- Spannungen in Seil und Stab, Längs-und Querdehnung, Wärmedehnung
- Statisch bestimmte und unbestimmte Stabsysteme
- Ebener und räumlicher Spannungs-und Verzerrungs-Zustand
- Hauptspannungen,

- Gerade und schiefe Biegung, Flächenträgheitsmomente
- Torsion, Kreis-und Kreisringquerschnitte, dünnwandige Querschnitte
- Energiemethoden in der Festigkeitslehre, Arbeitssatz, Prinzip der virtuellen Kräfte

Teilnahmevoraussetzungen und -empfehlungen

keine

Literatur

Hagedorn, P.; Wallaschek, J.: Technische Mechanik Band 1: Statik, Europa-

Lehrmittel, Ed. Harri Deutsch, 7. Auflage 2018.

Hagedorn, P.; Wallaschek, J.: Technische Mechanik 2: Festigkeitslehre, Europa-

Lehrmittel, Ed. Harri Deutsch, 5. Auflage, 2015.

Gross, D.; Hauger, W.; Schröder, J.; Wall, W.A.: Technische Mechanik 1: Statik,

Springer-Verlag, 14. Aufage, 2019.

Gross, D.; Hauger, W.; Schröder, J.; Wall, W.A.: Technische Mechanik 2: Elastostatik,

Springer-Verlag, 14. Aufage, 2021

Weitere Angaben

Grundlagen der Technischen Mechanik II			Sprache Deutsch
Modultitel englisch Fundamentals of Mechanics II		Kompetenzbereich Kompetenzbereich Grundlagen	
Angebot im WS 2024/25 nur Prüfung		Modultyp Pflicht	
Prüfungsform Klausur (min)			Prüfungsbewertung benotet
Studienleistung		Empfohlenes Fachsemester	
Studentische Arbeitsl 150 h	eistung		Frequenz jährlich
SWS	LP (ECTS)	Dozent/in	Prüfer/in
2 V + 2 Ü	5 LP		Junker
Schwerpunkt / Micro-Degree Bei Seminar: Seme		nesterthema (dt/en)	
Organisationseinheit Modulverantw N.N.		Modulverantwort N.N.	tlicher

Webseite

_

Qualifikationsziele

Nach erfolgreicher Absolvierung des Moduls sind die Studierenden in der Lage, selbständig Problemstellungen aus der Dynamik und Schwingungslehre zu lösen, insbesondere

- die Bewegung starrer Körper im Raum und in der Ebene zu beschreiben,
- Bewegungsgleichungen mit Hilfe von Drall- und Impulssatz sowie des Prinzips der stationären Wirkung aufstellen und deren Lösung berechnen,
- das zeitliche Verhalten dynamischer Systeme, einschließlich ihrer Stabilität zu beschreiben.

Inhalt

- Bewegung eines Punktes im Raum
- Ebene Bewegung starrer Körper
- Kinetische Energie, Impuls- und Drallsatz
- Stoßvorgänge
- Freie ungedämpfte und gedämpfte Schwingungen
- Erzwungene Schwingungen bei harmonischer und periodischer Anregung
- Resonanz und Tilgung Dynamische Systeme

Teilnahmevoraussetzungen und -empfehlungen

keine

Literatur

Hagedorn, P.; Wallaschek, J.: Technische Mechanik Band 3: Dynamik, Europa-Lehrmittel, Ed. Harri Deutsch, 5. Auflage 2016.

Gross, D.; Hauger, W.; Schröder, J.; Wall, W.A.: Technische Mechanik 3: Kinetik, Springer-Verlag, 14. Aufage, 2019.

Gross, D.; Hauger, W.; Schröder, J.; Wall, W.A.: Technische Mechanik 2: Elastostatik, Springer-Verlag, 14. Aufage, 2021.

Weitere Angaben

Integrierte Lehrveranstaltung bestehend aus Vorlesung, Hörsaalübung und Gruppenübung.

Stand: 19.09.2024

Grundlagen de	r elektromagneti	schen	Sprache
Energiewandlung			Deutsch
Modultitel englisch	1		Kompetenzbereich
Principles of Electro	magnetical Power Con	version	Kompetenzbereich Grundlagen
Angebot im WS 20)24/25		Modultyp
Vorlesung und Prüft	ung		Pflicht
Prüfungsform			Prüfungsbewertung
Klausur (120 min)			benotet
Studienleistung			Empfohlenes Fachsemester
			-
Studentische Arbeitsleistung			Frequenz
Workload: Gesamt 1	50 h / Präsenz 56 h / S	Selbstlernen 94 h	jährlich
SWS	LP (ECTS)	Dozent/in	Prüfer/in
2 V + 2 Ü	5 LP	Ponick	Ponick
Schwerpunkt / Mic	ro-Degree	Bei Seminar: Sei	mesterthema (dt/en)
keine			
Organisationseinheit		Modulverantwoi	rtlicher
Institut für Antriebssysteme und		IAL, Ponick	
Leistungselektronik, Institut für			
Antriebssysteme un	d Leistungselektronik		
		·	

Webseite

http://www.ial.uni-hannover.de/

Qualifikationsziele

Das Modul vermittelt grundlegende Kenntnisse über die wichtigsten Arten rotierender elektrischer Maschinen. Die Studierenden lernen, – deren Aufbau, physikalischen Wirkmechanismus und Betriebsverhalten zu verstehen, – die das Betriebsverhalten beschreibenden Berechnungsvorschriften auch auf neue Fragestellungen anzuwenden und – die charakeristischen Eigenschaften rotierender elektrischer Maschinen auf Basis der zugrundeliegenden physikalischen Zusammenhänge zu analysieren.

Inhalt

Gleichstrommaschinen

Verallgemeinerte Theorie von Mehrphasenmaschinen

Analytische Theorie von Vollpol-Synchronmaschinen

Analytische Theorie von Induktionsmaschinen

Teilnahmevoraussetzungen und -empfehlungen

Grundlagen der Elektrotechnik I + II

Literatur

Seinsch: Grundlagen elektrischer Maschinen und Antriebe; Skriptum zur Vorlesung

Weitere Angaben

Grundlage	n der Werkstoffkun	de	Sprache	
			Deutsch	
Modultitel er	nglisch		Kompetenzbereich	
Basics of mate	erial science		Kompetenzbereich Grundlagen	
Angebot im V	NS 2024/25		Modultyp	
Vorlesung und	l Prüfung		Pflicht	
Prüfungsform	1		Prüfungsbewertung	
Klausur (min)			benotet	
Studienleistung		Empfohlenes Fachsemester		
			-	
Studentische Arbeitsleistung			Frequenz	
Gesamt: 90 Stunden; davon Präsenz: 30 Stunden; davon		Stunden; davon	jährlich	
Selbststudium	: 60 Stunden			
SWS	LP (ECTS)	Dozent/in	Prüfer/in	
2 V	3 LP	Herbst	Herbst	
Schwerpunkt / Micro-Degree		Bei Seminar: Se	mesterthema (dt/en)	
keine				
Organisationseinheit		Modulverantwo	rtlicher	
		N.N.		

Webseite

_

Qualifikationsziele

Grundlagen des Aufbaues und der Charakterisierung von technisch wichtigen Materialien. Zusammenhänge zwischen Struktur, Eigenschaften und technischen Anwendungen

Inhalt

- Eigenschaften von Materialien - Atomare Struktur der Materie - Chemische Bindungen - Zustandsdiagramme - Kristalline Materialien - Realstrukturen - Methoden der Festkörperdiagnostik - Dünne Schichten - Mechanische Eigenschaften von Metallen - Elektrische Eigenschaften von Metallen - Magnetismus - Dielektrische Werkstoffe - Halbleitermaterialien.

Teilnahmevoraussetzungen und -empfehlungen

keine

Literatur

Grundlagen der Werkstoffkunde: – J. Shackelford: Werkstofftechnologie für Ingenieure – D. Spickermann: Werkstoffe der Elektrotechnik und Elektronik – H. Fischer: Werkstoffe der Elektrotechnik – W. Schatt,H. Worch: Werkstoffwissenschaften – D. R. Askeland: Materialwissenschaften – D. K. Ferry, J.P. Bird: Electronic Materials and Devices – C. Kittel: Einführung in die Festkörperphysik – D. Meschede: Gerthsen Physik

Weitere Angaben

Die Lehrveranstaltung "Grundlagen der Werkstoffkunde" gehört zum Modul "Konstruktion und Werkstoffe" und schließt mit einer benoteten Klausur ab. Zum Bestehen des gesamten Moduls ist das Bestehen der beiden unabhängigen Prüfungen notwendig.

Konstruktionsle	ehre I		Sprache	
			Deutsch	
Modultitel englisch			Kompetenzbereich	
Theory of Design I			Kompetenzbereich Grundlagen	
Angebot im WS 20	24/25		Modultyp	
Vorlesung und Prüfu	ing		Pflicht	
Prüfungsform			Prüfungsbewertung	
Klausur (90 min)			benotet	
Studienleistung			Empfohlenes Fachsemester	
Das "Konstruktive Projekt I" ist die Studienleistung zu der			-	
Lehrveranstaltung "Konstruktionslehre I"				
Studentische Arbeitsleistung			Frequenz	
Workload: Gesamt 1	50 h / Präsenz 56 h /	Selbstlernen 94 h	jährlich	
SWS	LP (ECTS)	Dozent/in	Prüfer/in	
2 V + 1 Ü + 1 P	4 LP	Wolf	Wolf	
Schwerpunkt / Micro-Degree		Bei Seminar: Se	Bei Seminar: Semesterthema (dt/en)	
keine				
Organisationseinheit		Modulverantwo	Modulverantwortlicher	
Institut für Produktentwicklung und		Lachmayer		
Gerätebau				

Webseite

http://www.ipeg.uni-hannover.de/

Qualifikationsziele

Das Modul vermittelt die Grundlagen des Konstruierens, des technischen Zeichnens sowie die Auswahl und Berechnung wichtiger Maschinenelemente. Darüber hinaus werden grundlegende Zusammenhänge der Produktinnovation und der Entwicklungsmethodik gelehrt.

Die Studierenden:

- •erlernen die Grundlagen des Technischen Zeichens
- •kennen wichtige Maschinenelemnte und berechnen diese
- •wenden grundlegende Zusammanhänge der Entwicklungsmethodik an
- •wenden für die Konstruktion von Produkten relevanten Werkzeuge an
- •identifizieren für die Konstruktion und Gestaltung von Produkten relevante Bauelemente

Inhalt

Modulinhalte:

- •Technisches Zeichen
- Getriebetechnik
- •Bauelemnete von Getrieben
- •Konstruktionswerkstoffe und Werkstoffprüfung
- Festigkeitsberechnung
- Verbindungen

Teilnahmevoraussetzungen und -empfehlungen

Technische Mechanik II

Literatur

Umdruck zur Vorlesung

Bei vielen Titeln des Springer-Verlages gibt es im W-Lan der LUH unter www.springer.com eine Gratis Online-Version.

Stand: 19.09.2024

Weitere Angaben

Titel alt: Grundzüge der Konstruktionslehre / Konstruktives Projekt I mit "Konstruktivem Projekt I" als Studienleistung

Mathematik für die Ingenieurwissenschaften I			Sprache Deutsch	
Modultitel englisch			Kompetenzbereich	
Mathematics for Engir	eering Sciences I		Kompetenzbereich Grundlagen	
Angebot im WS 2024	1/25		Modultyp	
Vorlesung und Prüfung)		Pflicht	
Prüfungsform			Prüfungsbewertung	
Klausur (120 min)			benotet	
Studienleistung			Empfohlenes Fachsemester	
keine			1 Semester	
Studentische Arbeitsleistung			Frequenz	
Gesamt 180 h / Präsen	z 84 h / Selbstlern	en 96 h	jedes Semester	
SWS	LP (ECTS)	Dozent/in	Prüfer/in	
4 V + 2 Ü	8 LP	Krug	Krug	
Schwerpunkt / Micro-Degree		Bei Seminar: Sem	Bei Seminar: Semesterthema (dt/en)	
keine				
Organisationseinheit		Modulverantwort	Modulverantwortlicher	
Institute der Mathematik		MAT	MAT	

Webseite

http://www.iag.uni-hannover.de/

Qualifikationsziele

Die Studierenden beherrschen nach diesem Kurs die Grundbegriffe der linearen Algebra mit Anwendungen auf die Lösung von linearen Gleichungssystemen und Eigenwertproblemen. Ein weiterer Schwerpunkt besteht im Erlernen des Grenzwertbegriffes in seinen unterschiedlichen Ausführungen und darauf aufbauender Gebiete wie der Differential und Integralrechnung. Die Studierenden kennen die mathematischen Schlussweisen und darauf aufbauenden Methoden.

Inhalt

Inhalt des Moduls

- Reelle und komplexe Zahlen
- Vektorräume; Lineare Gleichungssysteme
- Folgen
- Stetigkeit
- Elementare Funktionen
- Differentiation in einer Veränderlichen
- Integralrechnung in einer Veränderlichen
- Kurven

Teilnahmevoraussetzungen und -empfehlungen

keine

Literatur

- Kurt Meyberg, Peter Vachenauer: Höhere Mathematik 2. Differentialgleichungen, Funktio-nentheorie. Fourier-Analysis, Variationsrechnung. Springer, 4. Auflage 2001.
- Papula, Lothar: Mathematik für Ingenieure und Naturwissenschaftler. Ein Lehr- und Ar-beitsbuch für das Grundstudium. 3 Bände. Vieweg+Teubner.

- Papula, Lothar: Mathematische Formelsammlung: für Ingenieure und Naturwissenschaft-ler. Vieweg+Teubner.

Weitere Angaben

Titel alt: Mathematik I für Ingenieure

Ab WS 2022/23 Prüfungsform VbP für die Kurzklausuren. Die Prüfung muss im ersten Meldezeitraum eines Semesters in QIS angemeldet werden.

Jeweils aktuellste Informationen sowie Materialien im StudIP (http://studip.uni-hannover.de). Tranche I.

Stand: 19.09.2024

Mathematik für die Ingenieurwissenschaften II			Sprache
			Deutsch
Modultitel englisch			Kompetenzbereich
Mathematics for Engin	eering Sciences II		Kompetenzbereich Grundlagen
Angebot im WS 2024	/25		Modultyp
Vorlesung und Prüfung	I		Pflicht
Prüfungsform			Prüfungsbewertung
Klausur (120 min)			benotet
Studienleistung			Empfohlenes Fachsemester
keine			2 Semester
Studentische Arbeitsleistung			Frequenz
Gesamt 180 h / Präsenz 84 h / Selbstlernen 96 h			jedes Semester
SWS	LP (ECTS)	Dozent/in	Prüfer/in
4 V + 2 Ü	8 LP	Reede	Reede
Schwerpunkt / Micro-Degree		Bei Seminar: Semesterthema (dt/en)	
keine			
Organisationseinheit		Modulverantwortlicher	
Institute der Mathematik		MAT	

Webseite

http://www.iag.uni-hannover.de

Qualifikationsziele

Die Studierenden haben nach diesem Kurs vertiefte Kenntnissen über die Methoden der Differential- und Integralrechnung. Sie können sie auf kompliziertere Gebiete angewenden. Dazu gehören Potenzreihen, Reihenentwicklungen, z.B. Taylorreihen, Fourierentwicklungen sowie die Differentialrechnung angewandt auf skalarwertige und auf vektorwertige Funktionen mehrerer Veränderlicher. Die Integralrechnung wird auf Mehrfachintegrale und Linienintegrale erweitert. In technischen Anwendungen spielen Differentialgleichungen eine große Rolle. Im Mittelpunkt stehen hier Differentialgleichungen 1.Ordnung und lineare Differentialgleichungssysteme mit konstanten Koeffizienten.

Inhalt

- Differentialrechnung von Funktionen mehrerer Veränderlicher (reellwertige Funktionen mehrerer Veränderlicher, partielle Ableitungen, Richtungsableitung, Differenzierbarkeit, vektorwertige Funktionen, Taylorformel, lokale Ext-rema, Implizite Funktionen, Extrema unter Nebenbedingungen)
- Integralrechnung von Funktionen mehrerer Veränderlicher (Kurven im R^3, Kurvenintegrale, Mehrfachintegrale, Satz von Green, Transformationsregel, Flächen und Oberflächenintegrale im Raum, Sätze von Gauß und Stokes)
- Gewöhnliche Differentialgleichungen (Differentialgleichungen erster Ordnung, lineare Differentialgleichungen n-ter Ordnung, Systeme von Differentialgleichungen erster Ordnung)
- Zahlenreihen
- Potenzreihen und Taylorformel, Fourierentwicklungen

Teilnahmevoraussetzungen und -empfehlungen

Mathematik I für die Ingenieurwissenschaften I

Literatur

- Kurt Meyberg, Peter Vachenauer: Höhere Mathematik 2. Differentialgleichungen, Funktionentheorie. Fourier-Analysis, Variationsrechnung. Springer, 4. Auflage 2001.

- Papula, Lothar: Mathematik für Ingenieure und Naturwissenschaftler. Ein Lehr- und Arbeitsbuch für das Grundstudium. 3 Bände. Vieweg+Teubner.

Stand: 19.09.2024

- Papula, Lothar: Mathematische Formelsammlung: für Ingenieure und Naturwissenschaftler. Vieweg+Teubner.

Weitere Angaben

Titel alt: Mathematik II für Ingenieure

Ab WS 2022/23 Prüfungsform VbP für die Kurzklausuren. Die Prüfung muss im ersten Meldezeitraum eines Semesters in QIS angemeldet werden.

Jeweils aktuellste Informationen sowie Materialien in StudIP (http://studip.uni-hannover.de).

Anstelle der geforderten Klausur am Ende des Semesters können vorlesungsbegleitende Prüfungen in Form schriftlicher Kurzklausuren abgelegt werden.

Mathematik für die Ingenieurwissenschaften III – Numerik			Sprache Deutsch	
Modultitel englisch Mathematics for Engineering Sciences III - Numerics			Kompetenzbereich Kompetenzbereich Grundlagen	
Angebot im WS 2024/25 Vorlesung und Prüfung			Modultyp Pflicht	
Prüfungsform Klausur (90 min)			Prüfungsbewertung benotet	
Studienleistung keine			Empfohlenes Fachsemester 3 Semester	
Studentische Arbeitsleistung Workload: Gesamt 180 h / Präsenz 70 h / Selbstlernen 110 h			Frequenz jedes Semester	
SWS	LP (ECTS)	Dozent/in	Prüfer/in	
3 V + 2 Ü	6 LP	Attia, Leydecker	Beuchler	
Schwerpunkt / Micro-Degree keine		Bei Seminar: Semes	Bei Seminar: Semesterthema (dt/en)	
Organisationseinheit		Modulverantwortlid N.N.	Modulverantwortlicher N.N.	

Webseite

https://studip.uni-hannover.de/index.php?again=yes

Qualifikationsziele

Aufbauend auf den Kenntnissen aus Mathematik I und II haben die Studierenden in "Mathematik für die Ingenieurwissenschaften III – Numerik" verschiedenste Werkzeuge der Ingenieurmathematik erlernt, die für das Grundlagenstudium relevant sind. Diese finden auch in anderen Modulen des Bachelor Anwendung und sind Grundlage für die zu erwerbenden Kenntnisse und Fertigkeiten im Masterstudium.

Inhalt

Folgende Schwerpunkte werden in der Vorlesung vermittelt: Direkte und iterative Verfahren für lineare Gleichungssysteme, Nichtlineare Gleichungen und Systeme, Interpolation und Ausgleichsrechnung, Numerische Quadratur, Laplace-Transformation, Numerik gewöhnlicher und partieller Differentialgleichungen, Numerik für Randwertaufgaben für gewöhnliche Differentialgleichungen, optional: Matrizeneigenwertprobleme

Teilnahmevoraussetzungen und -empfehlungen

Mathematik für die Ingenieurwissenschaften I,

Mathematik für die Ingenieurwissenschaften II

Literatur

- -Matthias Bollhöfer, Volker Mehrmann. Numerische Mathematik. Vieweg, 2004.
- -Norbert Herrmann. Höhere Mathematik für Ingenieure, Physiker und Mathematiker (2. überarb. Auflage). Oldenbourg Wissenschaftsverlag, 2007.
- -Kurt Meyberg, Peter Vachenauer. Höhere Mathematik 2 (4., korr. Aufl. 2001). Springer.
- Jorge Nocedal, Stephen J. Wright. Numerical Optimization (2. Aufl.). Springer Series in Operations Research and Financial Engineering 2006

Weitere Angaben

Titel alt: Numerische Mathematik für Ingenieure

Bitte melden Sie sich bei Stud.IP für die Veranstaltung "Mathematik für die Ingenieurwissenschaften III – Numerik – Fragestunden" an. Dort erhalten Sie aktuelle Informationen, das Skript sowie Übungsaufgaben inkl. Lösungen.

Stand: 19.09.2024

Es wird empfohlen zusätzlich eine Gruppe in "Mathematik für die Ingenieurwissenschaften III – Numerik – Fragestunden" zu belegen.

Grundzüge der Informatik und Programmier			Sprache	
3		Deutsch		
Modultitel englisch			Kompetenzbereich	
Introduction to Compu	iter Science and Pr	ogramming	Kompetenzbereich Grundlagen	
Angebot im WS 2024	1/25		Modultyp	
Vorlesung und Prüfung)		Pflicht	
Prüfungsform			Prüfungsbewertung	
Nachweis			unbenotet	
Studienleistung			Empfohlenes Fachsemester	
Studienleistung nach Bekanntgabe durch Veranstalter			-	
Studentische Arbeitsl	eistung		Frequenz	
150 h			jährlich	
SWS	LP (ECTS)	Dozent/in	Prüfer/in	
2 V + 2 Ü	5 LP	Ostermann	Ostermann	
Schwerpunkt / Micro-Degree		Bei Seminar: Sem	Bei Seminar: Semesterthema (dt/en)	
keine				
Organisationseinheit		Modulverantwortl	Modulverantwortlicher	
Institut für Informazionsverarbeitung		TNT	TNT	

Webseite

https://www.tnt.uni-hannover.de/en/edu/vorlesungen/GIP/

Qualifikationsziele

Die Studierenden kennen die Grundprinzipien der Informatik. Sie können die elementaren Verfahren der Programmentwicklung mit Lösungsentwurf, Implementierung und Test anwenden und beherrschen die selbständige Entwicklung kleinerer Programmlösungen in C (funktional) und Python (objektorientiert).

Inhalt

- 1.) Ideen und Konzepte der Informatik: Algorithmen und ihre Berechenbarkeit, Von-Neumann-Rechnerarchitektur, Syntax und Semantik, Programmierparadigmen, Entwicklungsmethoden und Softwaregualität, Datenstrukturen und Algorithmen
- 2.) Imperative Programmierung mit C: Variablen und Konstanten, Kontrollstrukturen, Ausdrücke, Datenstrukturen, Funktionen und Module, Präprozessor und Programmbibliotheken
- 3.) Objektorientierte Programmierung mit Python: Klassen, Objekte, Vererbung (Generische Programmierung, Eventorientierte Programmierung)
- 4.) Methodische Programmentwicklung: Entwicklungswerkzeuge, Programmierstil, Programmtest, (Programmentwicklung im Team)

Teilnahmevoraussetzungen und -empfehlungen

Gute Kenntnisse der Bedienung eines Personalcomputers, insbesondere Nutzung eines Editors, sind elementare Grundvoraussetzungen für die erfolgreiche Teilnahme an der Lehrveranstaltung.

Literatur

- 1.) Jürgen Wolf: "C von A bis Z Das umfassende Handbuch", Rheinwerk Computing
- 2.) Bernd Klein: "Einführung in Python 3: Ein- und Umsteiger", Carl Hanser Verlag GmbH & Co. KG;
- 3.) Bernd Klein: "Numerisches Python: Arbeiten mit NumPy, Matplotlib und Pandas", Carl Hanser Verlag GmbH & Co. KG;

Weitere Angaben

Im Rahmen der Lehrveranstaltung werden semesterbegleitende Assignments sowie praktische Prüfungen

angeboten. Die erfolgreiche Bearbeitung der Assignments ist Voraussetzung für die Teilnahme an den praktischen Prüfungen. Für den erfolgreichen Abschluss des Moduls müssen alle praktischen Prüfungen bestanden werden. Eine Anrechnung bestandener Teilprüfungsleistungen (praktische Prüfung, Assignments) aus vorigen Semestern ist möglich. Für die Teilnahme an den Assignments und den praktischen Prüfungen ist eine Anmeldung zu Semesterbeginn erforderlich. Für die Teilnahme an den praktischen Prüfungen ist eine Anmeldung zu Semesterbeginn erforderlich. Für den erfolgreichen Abschluss des Moduls sind zwei praktische Prüfungen sowie mehrere semesterbegleitende Assignments zur Programmierung in C und Python zu bestehen. Eine Anrechnung bestandener Teilprüfungsleistungen (praktische Prüfung, Assignments) aus vorigen Semestern ist möglich. Für die Teilnahme an den Assignments und den praktischen Prüfungen ist eine Anmeldung zu Semesterbeginn zwingend erforderlich. Es handelt sich um eine unbenotete Studienleistung.

br>

Stand: 19.09.2024

Es werden semesterbegleitende Gruppenübungen / Sprechstunden in den CIP-Pools angeboten, um die Studierenden beim Lernen der Programmierung zu unterstützen.

Thermodyna	amik I		Sprache	
,		Englisch		
Modultitel englisch			Kompetenzbereich	
Thermodynamic	es l		Kompetenzbereich Grundlagen	
Angebot im W	S 2024/25		Modultyp	
Vorlesung und F	Prüfung		Pflicht	
Prüfungsform			Prüfungsbewertung	
Klausur (90 min)		benotet	
Studienleistung			Empfohlenes Fachsemester	
Keine			-	
Studentische Arbeitsleistung			Frequenz	
Gesamt: 120 Stunden; davon Präsenz: 75 Stunden; davon			jährlich	
Selbststudium:	45 Stunden			
SWS	LP (ECTS)	Dozent/in	Prüfer/in	
2 V + 3 Ü	4 LP	Kabelac	Kabelac	
Schwerpunkt / Micro-Degree		Bei Seminar: Se	Bei Seminar: Semesterthema (dt/en)	
keine				
Organisationseinheit		Modulverantwo	Modulverantwortlicher	
		N.N.	N.N.	

Webseite

_

Qualifikationsziele

Nach erfolgreichem Abschluss dieses Moduls sind die Studierenden in der Lage:

- Systeme zu abstrahieren, in Bilanzräume einzuteilen und zu bilanzieren.
- Energieerscheinungsformen zu benennen und anhand des Entropiebegriffs zu bewerten.
- -Einfache technische Systeme wie die Wärmekraftmaschine und Kompressionskälteanlage thermodynamisch zu analysieren

Inhalt

Die Vorlesung führt in die energetische Bilanzierung von Systemen ein und vertieft diese anhand von Beispielen aus der Energietechnik. Die Studierenden lernen zunächst unterschiedliche Energieformen, Bilanzräume und Bilanzarten kennen, um quantitative Rechnungen auf Basis des 1. Hauptsatzes (HS) für offene und geschlossene Systeme durchzuführen. Der 2. HS führt den Begriff der Entropie ein, mit dem die verschiedenen Erscheinungsformen der Energie bewertet werden können. Dieses Wissen kann dann auf technische Systeme, wie die einfache Kompressionskälteanlage und Wärmekraftmaschine angewendet werden. Zusätzlich erlernen die Studierenden, von den thermodynamischen Fundamentalgleichungen abgeleitete einfache Modelle zur Berechnung von Stoffeigenschaften.

Teilnahmevoraussetzungen und -empfehlungen keine

Literatur

Baehr, H.D. und Kabelac, S.: Thermodynamik, 16. Aufl.; Berlin, Heidelberg: Springer-Verl., 2016 Stephan, P., Schaber, K.,

Stephan, K., Mayinger, F.: Thermodynamik - Grundlagen und technische Anwendungen (Band 1 & 2), 15. Aufl.; Berlin

Heidelberg: Springer-Verl., 2010 Kondepudi, D.: Modern Thermodynamics, 2nd ed.; Hoboken: Wiley, 2014

Bei vielen Titeln des Springer-Verlages gibt es im WLAN der LUH unter www.springer.com eine Gratis-Online-Version.

Stand: 19.09.2024

Weitere Angaben

1.2. Kompetenzbereich Einführung und Schlüsselkompetenzen

Englischer Titel: Introduction and key competences

Information zum : 23 LP, P

Aspekte der Energiewende			Sprache Deutsch
Modultitel englisch Aspects of Energy Transition			Kompetenzbereich Kompetenzbereich Einführung und Schlüsselkompetenzen
Angebot im WS 2024 Vorlesung und Prüfung			Modultyp Pflicht
Prüfungsform Keine			Prüfungsbewertung unbenotet
Studienleistung 1, WiSe			Empfohlenes Fachsemester -
Studentische Arbeitsleistung 90 h			Frequenz jährlich
SWS	LP (ECTS)	Dozent/in	Prüfer/in
3 SE	3 LP	Bensmann, Hanke- Rauschenbach	Bensmann, Hanke-Rauschenbach
Schwerpunkt / Micro-Degree keine		Bei Seminar: Semesterthema (dt/en)	
Organisationseinheit Institut für Elektrische Energiesysteme/IfES		Modulverantwortlicher Hanke-Rauschenbach	

Webseite

http://www.ifes.uni-hannover.de/ees

Qualifikationsziele

Die Teilnehmenden treffen sich zweiwöchentlich zu einer 4,5-stündigen (6x45 min) Sitzung. Jede Sitzung ist einem übergeordneten technischen/nicht-technischen Thema im Kontext Energiewende gewidmet (siehe unten – Inhalte/Themen). Im Rahmen der Sitzung werden 6-7 zum jeweiligen Thema passende Quellen (z.B. Studien, White-Papers, Journal-Artikel, etc.) durch ausgewählte Teilnehmende mittels Impulsreferaten vorgestellt und anschließend in der Gruppe diskutiert. Am Ende einer jeden Sitzung wird die Quellenliste für die nächste Sitzung herausgegeben/besprochen und die Quellen für die anschließende Bearbeitung/Vorbereitung unter den Teilnehmenden aufgeteilt.

Nach erfolgreichem Absolvieren der Veranstaltung verfügen die Teilnehmerinnen/Teilnehmer über folgende Fähigkeiten:

Fachlich/themenbezogen

- Vertieftes Wissen zu den bearbeiteten Themen (siehe Stoffplan)

Methodisch

- Recherche-/Quellenarbeit technischer und nicht-technischer Quellen
- Ausarbeitung und Halten von Impulsreferaten
- Training der Argumentations- und Diskursfähigkeit

Inhalt

- Szenarien für die Energiewende und Entwicklung der Versorgungsicherheit
- Hemmnisse für eine Akzeptanz der Energiewende
- CO2-Bepreisungssysteme und deren Wirkung auf den Klimaschutz

- Negative CO2-Emissionen und nachhaltige CO2-Kreisläufe
- Neue Mobilitätskonzepte und deren Wirkung auf den Klimaschutz
- "Joker"-Thema; durch die Teilnehmenden auszuwählen/festzulegen

Teilnahmevoraussetzungen und -empfehlungen

Es werden keine besonderen Vorkenntnisse benötigt.

Literatur

Literatur wird themenspezifisch vor dem jeweiligen Termin bekannt gegeben.

Weitere Angaben

Seminarleistung bestehend aus:

- jede Teilnehmerin/Teilnehmer bearbeitet zu jedem der Termine eine Quelle

- jede Teilnehmerin/jeder Teilnehmer soll genau zweimal ein Impulsreferat zu ihrer/seiner Quelle vorbereiten und vortragen; die Verantwortlichkeiten werden im Vorfeld der jeweiligen Termine festgelegt
 - jede Teilnehmerin/jeder Teilnehmer soll genau zweimal ein Impulsreferat zu ihrer/seiner Quelle
 - vorbereiten und vortragen; die Verantwortlichkeiten werden im Vorfeld der jeweiligen Termine festgelegt
 - vorbereiten und vortragen; die Verantwortlichkeiten werden im Vorfeld der jeweiligen Termine festgelegt

Stand: 19.09.2024

- jede Teilnehmerin/jeder Teilnehmer ist gemeinsam in einer Gruppe aus 3-4 Kommilitonen genau einmal für die Dokumentation eines Sitzungstermins verantwortlich; die Verantwortlichkeiten werden im Vorfeld der jeweiligen Termine festgelegt
or>
- jede Teilnehmerin/Teilnehmer nimmt an mind. 80% der Seminar-Termine teil und beteiligt sich in den Terminen an der Diskussion der Quellen

Bachelorprojekt	Sprache			
Energiespeichers	Deutsch			
Modultitel englisch			Kompetenzbereich	
bachelor project Power	Engineering – Elec	ctric Energy Storage Systems	Kompetenzbereich Einführung	
			und Schlüsselkompetenzen	
Angebot im WS 2024	l /25		Modultyp	
Vorlesung und Prüfung)		Wahl	
Prüfungsform			Prüfungsbewertung	
Projektarbeit (P)			unbenotet	
Studienleistung			Empfohlenes Fachsemester	
Studienleistung nach Bekanntgabe durch Veranstalter			-	
Studentische Arbeitsleistung			Frequenz	
Gesamt: 150 Stunden; davon Präsenz: 75 Stunden; davon			jedes Semester	
Selbststudium: 75 Stunden				
SWS	LP (ECTS)	Dozent/in	Prüfer/in	
5 P	5 LP N.N.		Hanke-Rauschenbach	
Schwerpunkt / Micro-Degree		Bei Seminar: Semest	Bei Seminar: Semesterthema (dt/en)	
keine				
Organisationseinheit		Modulverantwortlich	Modulverantwortlicher	
		N.N.	N.N.	

Webseite

https://www.ifes.uni-hannover.de/de/ees

Qualifikationsziele

Das Bachelorprojekt kann – je nach Aufgabenstellung – einzeln oder in einem kleinen Team bearbeitet werden. Die Arbeitsergebnisse sind in der Regel (in knapper Form) schriftlich zu dokumentieren (Beschreibung der Aufgabe, Projektplanung, Dokumentation des Zeitaufwands, Zusammenfassung der Ergebnisse).

Inhalt

Das Bachelorprojekt ist eine experimentelle, dokumentarische oder darstellende wissenschaftlich – praktsche Leistung (Projekt). Diese Projektarbeit hat einen Umfang von 150 h. Die Aufgaben für die Projektarbeiten werden in der Regel individuell gestellt werden. Möglich sind z. B. – eine Messaufgabe im Rahmen eines aktuellen Forschungsprojekts – Programmierung eines Dialogsystems oder eines einfachen Bildverarbeitungssystems – Konzeption, Entwurf und Layout einer Schaltung, eines Geräts, o. ä. – Aufbau und Simulation komplexerer numerischer Modelle (FEM, Matlab-Simulink, o.ä.) und weiteres nach Absprache

Teilnahmevoraussetzungen und -empfehlungen keine

Literatur

Weitere Angaben

Bachelorprojekt l	Sprache			
Energieversorgur	ıg	Deutsch		
Modultitel englisch			Kompetenzbereich	
bachelor project Power	Engineering – Elec	ctric Power Engineering	Kompetenzbereich Einführung	
			und Schlüsselkompetenzen	
Angebot im WS 2024	/25		Modultyp	
Vorlesung und Prüfung	I		Wahl	
Prüfungsform			Prüfungsbewertung	
Projektarbeit (P)			unbenotet	
Studienleistung			Empfohlenes Fachsemester	
Studienleistung nach E	Bekanntgabe durch	Veranstalter	-	
Studentische Arbeitsl	eistung		Frequenz	
Gesamt: 150 Stunden;	davon Präsenz: 75	Stunden; davon	jedes Semester	
Selbststudium: 75 Stur	nden			
SWS	LP (ECTS)	Dozent/in	Prüfer/in	
5 P	5 LP N.N.		Hofmann	
Schwerpunkt / Micro-Degree		Bei Seminar: Sei	mesterthema (dt/en)	
keine				
Organisationseinheit		Modulverantwo	rtlicher	
-		N.N.	N.N.	

Webseite

http://www.ifes.uni-hannover.de

Qualifikationsziele

Das Bachelorprojekt kann – je nach Aufgabenstellung – einzeln oder in einem kleinen Team bearbeitet werden. Die Arbeitsergebnisse sind in der Regel (in knapper Form) schriftlich zu dokumentieren (Beschreibung der Aufgabe, Projektplanung, Dokumentation des Zeitaufwands, Zusammenfassung der Ergebnisse).

Inhalt

Das Bachelorprojekt ist eine experimentelle, dokumentarische oder darstellende wissenschaftlich – praktsche Leistung (Projekt). Diese Projektarbeit hat einen Umfang von 150 h. Die Aufgaben für die Projektarbeiten werden in der Regel individuell gestellt werden. Möglich sind z. B.

- eine Messaufgabe im Rahmen eines aktuellen Forschungsprojekts
- Programmierung eines Dialogsystems oder eines einfachen Bildverarbeitungssystems
- Konzeption, Entwurf und Layout einer Schaltung, eines Geräts, o. ä.
- Aufbau und Simulation komplexerer numerischer Modelle (FEM, Matlab-Simulink, o.ä.) und weiteres nach Absprache

Teilnahmevoraussetzungen und -empfehlungen

keine

Literatur

Bachelorprojekt l	Sprache			
Maschinen und A	Deutsch			
Modultitel englisch			Kompetenzbereich	
bachelor project Power	Engineering – Elec	ctric Machines and Drive	s Kompetenzbereich Einführung und Schlüsselkompetenzen	
Angebot im WS 2024	/25		Modultyp	
Vorlesung und Prüfung	I		Wahl	
Prüfungsform Projektarbeit (P)			Prüfungsbewertung unbenotet	
Studienleistung			Empfohlenes Fachsemester	
Studienleistung nach B	Bekanntgabe durch	Veranstalter	-	
Studentische Arbeitsl	eistung		Frequenz	
Gesamt: 150 Stunden; Selbststudium: 75 Stur		Stunden; davon	jedes Semester	
SWS	LP (ECTS)	Dozent/in	Prüfer/in	
5 P	P 5 LP N.N.		Ponick	
Schwerpunkt / Micro-Degree keine		Bei Seminar: Ser	mesterthema (dt/en)	
Organisationseinheit	Organisationseinheit		tlicher	
-		N.N.	N.N.	

Webseite

http://www.ial.uni-hannover.de

Qualifikationsziele

Das Bachelorprojekt kann – je nach Aufgabenstellung – einzeln oder in einem kleinen Team bearbeitet werden. Die Arbeitsergebnisse sind in der Regel (in knapper Form) schriftlich zu dokumentieren (Beschreibung der Aufgabe, Projektplanung, Dokumentation des Zeitaufwands, Zusammenfassung der Ergebnisse).

Inhalt

Das Bachelorprojekt ist eine experimentelle, dokumentarische oder darstellende wissenschaftlich – praktsche Leistung (Projekt). Diese Projektarbeit hat einen Umfang von 150 h. Die Aufgaben für die Projektarbeiten werden in der Regel individuell gestellt werden. Möglich sind z. B.

- eine Messaufgabe im Rahmen eines aktuellen Forschungsprojekts
- Programmierung eines Dialogsystems oder eines einfachen Bildverarbeitungssystems
- Konzeption, Entwurf und Layout einer Schaltung, eines Geräts, o. ä.
- Aufbau und Simulation komplexerer numerischer Modelle (FEM, Matlab-Simulink, o.ä.) und weiteres nach Absprache

Teilnahmevoraussetzungen und -empfehlungen

keine

Literatur

Bachelorprojekt l	Sprache			
Elektroprozessted	Deutsch			
Modultitel englisch			Kompetenzbereich	
bachelor project Power	Engineering – Elec	trotechnology	Kompetenzbereich Einführung	
			und Schlüsselkompetenzen	
Angebot im WS 2024	l/ 25		Modultyp	
Vorlesung und Prüfung	}		Wahl	
Prüfungsform			Prüfungsbewertung	
Projektarbeit (P)			unbenotet	
Studienleistung			Empfohlenes Fachsemester	
Studienleistung nach E	Bekanntgabe durch	Veranstalter	-	
Studentische Arbeitsl	eistung		Frequenz	
Gesamt: 150 Stunden;	davon Präsenz: 75	Stunden; davon	jedes Semester	
Selbststudium: 75 Stur	nden			
SWS	LP (ECTS)	Dozent/in	Prüfer/in	
5 P 5 LP N.N.			Baake	
Schwerpunkt / Micro-Degree		Bei Seminar: Sei	Bei Seminar: Semesterthema (dt/en)	
keine				
Organisationseinheit		Modulverantwo	Modulverantwortlicher	
_		N.N.	N.N.	

Webseite

http://www.etp.uni-hannover.de

Qualifikationsziele

Das Bachelorprojekt kann – je nach Aufgabenstellung – einzeln oder in einem kleinen Team bearbeitet werden. Die Arbeitsergebnisse sind in der Regel (in knapper Form) schriftlich zu dokumentieren (Beschreibung der Aufgabe, Projektplanung, Dokumentation des Zeitaufwands, Zusammenfassung der Ergebnisse).

Inhalt

Das Bachelorprojekt ist eine experimentelle, dokumentarische oder darstellende wissenschaftlich – praktsche Leistung (Projekt). Diese Projektarbeit hat einen Umfang von 150 h. Die Aufgaben für die Projektarbeiten werden in der Regel individuell gestellt werden. Möglich sind z. B.

- eine Messaufgabe im Rahmen eines aktuellen Forschungsprojekts
- Programmierung eines Dialogsystems oder eines einfachen Bildverarbeitungssystems
- Konzeption, Entwurf und Layout einer Schaltung, eines Geräts, o. ä.
- Aufbau und Simulation komplexerer numerischer Modelle (FEM, Matlab-Simulink, o.ä.) und weiteres nach Absprache

Teilnahmevoraussetzungen und -empfehlungen

keine

Literatur

Bachelorprojekt	Energietechni	Sprache		
Hochspannungst	echnik und As	Deutsch		
Modultitel englisch		Kompetenzbereich		
bachelor project Powe	r Engineering – Hig	h Voltage Technology an	d Kompetenzbereich Einführung	
Asset Management			und Schlüsselkompetenzen	
Angebot im WS 2024	4/25		Modultyp	
Vorlesung und Prüfung	g		Wahl	
Prüfungsform			Prüfungsbewertung	
Projektarbeit (P)			unbenotet	
Studienleistung			Empfohlenes Fachsemester	
Studienleistung nach I	Bekanntgabe durch	Veranstalter	-	
Studentische Arbeits	leistung		Frequenz	
Gesamt: 150 Stunden;	davon Präsenz: 75	Stunden; davon	jedes Semester	
Selbststudium: 75 Stu	nden			
SWS	LP (ECTS)	Dozent/in	Prüfer/in	
5 P	5 LP	N.N.	Werle	
Schwerpunkt / Micro-Degree		Bei Seminar: Sei	mesterthema (dt/en)	
keine				
Organisationseinheit		Modulverantwoi	Modulverantwortlicher	
		N.N.	N.N.	

Webseite

https://www.ifes.uni-hannover.de/de/si

Qualifikationsziele

Das Bachelorprojekt kann – je nach Aufgabenstellung – einzeln oder in einem kleinen Team bearbeitet werden. Die Arbeitsergebnisse sind in der Regel (in knapper Form) schriftlich zu dokumentieren (Beschreibung der Aufgabe, Projektplanung, Dokumentation des Zeitaufwands, Zusammenfassung der Ergebnisse).

Inhalt

Das Bachelorprojekt ist eine experimentelle, dokumentarische oder darstellende wissenschaftlich – praktsche Leistung (Projekt). Diese Projektarbeit hat einen Umfang von 150 h. Die Aufgaben für die Projektarbeiten werden in der Regel individuell gestellt werden. Möglich sind z. B. – eine Messaufgabe im Rahmen eines aktuellen Forschungsprojekts – Programmierung eines Dialogsystems oder eines einfachen Bildverarbeitungssystems – Konzeption, Entwurf und Layout einer Schaltung, eines Geräts, o. ä. – Aufbau und Simulation komplexerer numerischer Modelle (FEM, Matlab-Simulink, o.ä.) und weiteres nach Absprache

Teilnahmevoraussetzungen und -empfehlungen keine

Literatur

Bachelorprojekt I	Sprache			
Leistungselektror	Deutsch			
Modultitel englisch			Kompetenzbereich	
bachelor project Power	Engineering - Pow	er electronics and drive	Kompetenzbereich Einführung	
control			und Schlüsselkompetenzen	
Angebot im WS 2024	/25		Modultyp	
Vorlesung und Prüfung	J		Wahl	
Prüfungsform			Prüfungsbewertung	
Projektarbeit (P)			unbenotet	
Studienleistung			Empfohlenes Fachsemester	
Studienleistung nach B	Sekanntgabe durch \	<i>V</i> eranstalter	-	
Studentische Arbeitsl	eistung		Frequenz	
Gesamt: 150 Stunden;	davon Präsenz: 75 S	Stunden; davon	jedes Semester	
Selbststudium: 75 Stur	nden			
SWS	LP (ECTS)	Dozent/in	Prüfer/in	
5 P	5 LP	Mertens		
Schwerpunkt / Micro-Degree		Bei Seminar: Sem	Bei Seminar: Semesterthema (dt/en)	
keine				
Organisationseinheit	Organisationseinheit		Modulverantwortlicher	
			N.N.	

Webseite

http://www.ial.uni-hannover.de

Qualifikationsziele

Das Bachelorprojekt kann – je nach Aufgabenstellung – einzeln oder in einem kleinen Team bearbeitet werden. Die Arbeitsergebnisse sind in der Regel (in knapper Form) schriftlich zu dokumentieren (Beschreibung der Aufgabe, Projektplanung, Dokumentation des Zeitaufwands, Zusammenfassung der Ergebnisse).

Inhalt

Das Bachelorprojekt ist eine experimentelle, dokumentarische oder darstellende wissenschaftlich – praktsche Leistung (Projekt). Diese Projektarbeit hat einen Umfang von 150 h. Die Aufgaben für die Projektarbeiten werden in der Regel individuell gestellt werden. Möglich sind z. B.

- eine Messaufgabe im Rahmen eines aktuellen Forschungsprojekts
- Programmierung eines Dialogsystems oder eines einfachen Bildverarbeitungssystems
- Konzeption, Entwurf und Layout einer Schaltung, eines Geräts, o. ä.
- Aufbau und Simulation komplexerer numerischer Modelle (FEM, Matlab-Simulink, o.ä.) und weiteres nach Absprache

Teilnahmevoraussetzungen und -empfehlungen

keine

Literatur

Bachelorprojekt	Energietechnil	Sprache	
Verbrennung		Deutsch	
Modultitel englisch			Kompetenzbereich
bachelor project Power	Engineering – Tec	hnical Combustion	Kompetenzbereich Einführung
			und Schlüsselkompetenzen
Angebot im WS 2024	l / 25		Modultyp
Vorlesung und Prüfung	9		Wahl
Prüfungsform			Prüfungsbewertung
Projektarbeit (P)			unbenotet
Studienleistung			Empfohlenes Fachsemester
Studienleistung nach E	Bekanntgabe durch	Veranstalter	-
Studentische Arbeitsl	eistung		Frequenz
Gesamt: 150 Stunden;	davon Präsenz: 75	Stunden; davon	jedes Semester
Selbststudium: 75 Stur	nden		
SWS	LP (ECTS)	Dozent/in	Prüfer/in
5 P	5 LP N.N.		Dinkelacker
Schwerpunkt / Micro-Degree		Bei Seminar: Sei	mesterthema (dt/en)
keine			
Organisationseinheit		Modulverantwo	rtlicher
		N.N.	

Webseite

http://www.itv.uni-hannover.de

Qualifikationsziele

Das Bachelorprojekt kann – je nach Aufgabenstellung – einzeln oder in einem kleinen Team bearbeitet werden. Die Arbeitsergebnisse sind in der Regel (in knapper Form) schriftlich zu dokumentieren (Beschreibung der Aufgabe, Projektplanung, Dokumentation des Zeitaufwands, Zusammenfassung der Ergebnisse).

Inhalt

Das Bachelorprojekt ist eine experimentelle, dokumentarische oder darstellende wissenschaftlich – praktsche Leistung (Projekt). Diese Projektarbeit hat einen Umfang von 150 h. Die Aufgaben für die Projektarbeiten werden in der Regel individuell gestellt werden. Möglich sind z. B.

- eine Messaufgabe im Rahmen eines aktuellen Forschungsprojekts
- Programmierung eines Dialogsystems oder eines einfachen Bildverarbeitungssystems
- Konzeption, Entwurf und Layout einer Schaltung, eines Geräts, o. ä.
- Aufbau und Simulation komplexerer numerischer Modelle (FEM, Matlab-Simulink, o.ä.) und weiteres nach Absprache

Teilnahmevoraussetzungen und -empfehlungen

keine

Literatur

Bachelorprojekt l	Energietechnil	Sprache Deutsch	
Modultitel englisch bachelor project Power	Kompetenzbereich Kompetenzbereich Einführung und Schlüsselkompetenzen		
Angebot im WS 2024 Vorlesung und Prüfung			Modultyp Wahl
Prüfungsform Projektarbeit (P)		Prüfungsbewertung unbenotet	
Studienleistung Studienleistung nach E	Bekanntgabe durch	Empfohlenes Fachsemester	
Studentische Arbeitsl Gesamt: 150 Stunden; Selbststudium: 75 Stur	davon Präsenz: 75	Stunden; davon	Frequenz jedes Semester
SWS	LP (ECTS)	Dozent/in	Prüfer/in
5 P	5 LP	N.N.	Kabelac
Schwerpunkt / Micro-Degree keine		Bei Seminar: Sem	esterthema (dt/en)
Organisationseinheit		Modulverantwort N.N.	licher

Webseite

http://www.ift.uni-hannover.de

Qualifikationsziele

Das Bachelorprojekt kann – je nach Aufgabenstellung – einzeln oder in einem kleinen Team bearbeitet werden. Die Arbeitsergebnisse sind in der Regel (in knapper Form) schriftlich zu dokumentieren (Beschreibung der Aufgabe, Projektplanung, Dokumentation des Zeitaufwands, Zusammenfassung der Ergebnisse).

Inhalt

Das Bachelorprojekt ist eine experimentelle, dokumentarische oder darstellende wissenschaftlich – praktsche Leistung (Projekt). Diese Projektarbeit hat einen Umfang von 150 h. Die Aufgaben für die Projektarbeiten werden in der Regel individuell gestellt werden. Möglich sind z. B.

- eine Messaufgabe im Rahmen eines aktuellen Forschungsprojekts
- Programmierung eines Dialogsystems oder eines einfachen Bildverarbeitungssystems
- Konzeption, Entwurf und Layout einer Schaltung, eines Geräts, o. ä.
- Aufbau und Simulation komplexerer numerischer Modelle (FEM, Matlab-Simulink, o.ä.) und weiteres nach Absprache

Teilnahmevoraussetzungen und -empfehlungen

keine

Literatur

Bachelorprojekt	Sprache			
und Fluid-Dynan	Deutsch			
Modultitel englisch			Kompetenzbereich	
bachelor project Power	Engineering – Tur	bomachinery and Fluid	Kompetenzbereich Einführung	
Dynamics			und Schlüsselkompetenzen	
Angebot im WS 2024	l /25		Modultyp	
Vorlesung und Prüfung)		Wahl	
Prüfungsform			Prüfungsbewertung	
Projektarbeit (P)			unbenotet	
Studienleistung			Empfohlenes Fachsemester	
Studienleistung nach E	Bekanntgabe durch	Veranstalter	-	
Studentische Arbeitsl	eistung		Frequenz	
Gesamt: 150 Stunden;	davon Präsenz: 75	Stunden; davon	jedes Semester	
Selbststudium: 75 Stur	nden			
SWS	LP (ECTS)	Dozent/in	Prüfer/in	
5 P	5 LP	Seume		
Schwerpunkt / Micro-Degree Bo		Bei Seminar: Semes	terthema (dt/en)	
keine				
Organisationseinheit		Modulverantwortlic	her	
		N.N.	N.N.	

Webseite

http://www.tfd.uni-hannover.de

Qualifikationsziele

Das Bachelorprojekt kann – je nach Aufgabenstellung – einzeln oder in einem kleinen Team bearbeitet werden. Die Arbeitsergebnisse sind in der Regel (in knapper Form) schriftlich zu dokumentieren (Beschreibung der Aufgabe, Projektplanung, Dokumentation des Zeitaufwands, Zusammenfassung der Ergebnisse).

Inhalt

Das Bachelorprojekt ist eine experimentelle, dokumentarische oder darstellende wissenschaftlich – praktsche Leistung (Projekt). Diese Projektarbeit hat einen Umfang von 150 h. Die Aufgaben für die Projektarbeiten werden in der Regel individuell gestellt werden. Möglich sind z. B.

- eine Messaufgabe im Rahmen eines aktuellen Forschungsprojekts
- Programmierung eines Dialogsystems oder eines einfachen Bildverarbeitungssystems
- Konzeption, Entwurf und Layout einer Schaltung, eines Geräts, o. ä.
- Aufbau und Simulation komplexerer numerischer Modelle (FEM, Matlab-Simulink, o.ä.) und weiteres nach Absprache

Teilnahmevoraussetzungen und -empfehlungen

keine

Literatur

Projekt Energy To	Sprache Englisch		
Modultitel englisch	Kompetenzbereich		
project Energy Technol	Kompetenzbereich Einführung und Schlüsselkompetenzen		
Angebot im WS 2024	/25		Modultyp
Vorlesung und Prüfung	J		Wahl
Prüfungsform			Prüfungsbewertung
Projektarbeit (P)			unbenotet
Studienleistung			Empfohlenes Fachsemester
Studienleistung nach B	Bekanntgabe durch	Veranstalter	-
Studentische Arbeitsl	eistung		Frequenz
Gesamt: 150 Stunden;	davon Präsenz: 75	Stunden; davon	jedes Semester
Selbststudium: 75 Stur	nden		
SWS	LP (ECTS)	Dozent/in	Prüfer/in
5 P	5 LP	N.N.	N.N.
Schwerpunkt / Micro-Degree		Bei Seminar: Sen	nesterthema (dt/en)
keine			
Organisationseinheit		Modulverantwor	tlicher
		N.N.	

Webseite

-

Qualifikationsziele

Depending on the task, the project energy technology can be completed individually or in a small team. As standard, the results of the work must be documented (in brief) in writing (description of the task, project planning, documentation of the time required, summary of the results).

Inhalt

The project energy technology is an experimental, documentary or demonstrative scientific - practical achievement (project). This project work has a scope of 150 hours. The tasks for the project work are usually set individually. Possible tasks include: - a measurement task as part of a current research project - programming a dialogue system or a simple image processing system - conception, design and layout of a circuit, a device, etc. - construction and simulation of complex numerical models (FEM, Matlab-Simulink, etc.) and others by arrangement.

$Teilnahme vor aussetzungen\ und\ -empfehlungen$

keine

Literatur

Studieneinstiegsmodul (1/4): Mathematische Methoden der Elektrotechnik			Sprache Deutsch
Modultitel englisch Mathematical Methods for Electrical Engineering			Kompetenzbereich Kompetenzbereich Einführung und Schlüsselkompetenzen
Angebot im WS 2024 Vorlesung und Prüfung			Modultyp Pflicht
Prüfungsform Klausur (60 min)			Prüfungsbewertung unbenotet
Studienleistung 1, WiSe/SoSe			Empfohlenes Fachsemester
Studentische Arbeitsl 30 h	eistung		Frequenz unbekannt
SWS	LP (ECTS)	Dozent/in	Prüfer/in
2 V	2 LP	Jambor	Preißler, Jambor
Schwerpunkt / Micro-Degree keine		Bei Seminar: Seme	sterthema (dt/en)
Organisationseinheit Fachgruppe Didaktik der Elektrotechnik und Informatik		Modulverantwortling Jambor	cher

Webseite

https://www.dei.uni-hannover.de/de/lehre/vorlesungen/mathematische-methoden-der-elektrotechnik/

Qualifikationsziele

Die Studierenden benennen Grundbegriffe elementarer Rechenmethoden (Bruchrechnen, Potenzgesetze, Logarithmen, Gleichungen und Ungleichungen etc.) und erläutern deren Funktion. Sie setzen die Rechenmethoden problembezogen ein. Die Studierenden stellen Gleichungssysteme auf und lösen sie mit passenden Verfahren. Weiterführende mathematische Verfahren können sie zielgerichtet anwenden und notwendige Berechnungen durchführen.

Inhalt

Elementare Rechenmethoden (Bruchrechnen; Potenzgesetze, Logarithmen, Gleichungen und Ungleichungen etc.)

Gleichungssysteme,

Funktionen,

Geometrische Grundlagen (Koordinatensysteme, Winkeln in geometrischen Figuren, Flächen- und Volumenberechnung) und trigonometrischen Funktion.

Differenzialrechnung

Integralrechnung

Vektorrechnung

Einführung in die Thematik "komplexe Zahlen"

Teilnahmevoraussetzungen und -empfehlungen

keine

Literatur

wird in der Sitzung bekannt gegeben.

Weitere Angaben

Stand: 19.09.2024

Studieneinstiegsmodul (2/4): Ringvorlesung			Sprache
			Deutsch
Modultitel englisch			Kompetenzbereich
Lecture cycle			Kompetenzbereich Einführung
			und Schlüsselkompetenzen
Angebot im WS 2024	l /25		Modultyp
Vorlesung und Prüfung)		Pflicht
Prüfungsform			Prüfungsbewertung
Nachweis			unbenotet
Studienleistung			Empfohlenes Fachsemester
1, WiSe			-
Studentische Arbeitsl	eistung		Frequenz
30 h			unbekannt
SWS	LP (ECTS)	Dozent/in	Prüfer/in
2 V	1 LP	N.N.	Preißler, Ponick
Schwerpunkt / Micro-Degree		Bei Seminar: Se	mesterthema (dt/en)
keine			
Organisationseinheit		Modulverantwortlicher	
Institut für Antriebssysteme und		Ponick	
Leistungselektronik			

Webseite

-

Qualifikationsziele

Die Studierenden benennen Teildisziplinen ihres Fachgebietes und mögliche spätere Arbeitsfelder. Sie erläutern die Teilbereiche ihrer Fachdisziplin, welche in ihrem Studiengang an der Lehre beteiligt sind. Sie benennen deren Relevanz für das spätere Studium und stellen Zusammenhänge zwischen den Disziplinen her.

Inhalt

Die Vorlesung ist als Ringvorlesung konzipiert, in der die Studienanfänger/-innen einen Überblick über ihr Studienfach erhalten sollen.

Teilnahmevoraussetzungen und -empfehlungen

keine

Literatur

wird in der ersten Sitzung bekannt gegeben

Weitere Angaben

Im Sommersemester ist das Angebot NICHT für BSc. Energietechnik und Mechatronik.

Studieneinstiegsmodul (3/4): Orientierungsblock			Sprache Deutsch
Modultitel englisch Orientation for firstyear students			Kompetenzbereich Kompetenzbereich Einführung und Schlüsselkompetenzen
Angebot im WS 2024 Vorlesung und Prüfung			Modultyp Wahl-Pflicht
Prüfungsform Nachweis			Prüfungsbewertung unbenotet
Studienleistung 1, WiSe/SoSe			Empfohlenes Fachsemester
Studentische Arbeitsl 60 h	eistung		Frequenz jedes Semester
SWS	LP (ECTS)	Dozent/in	Prüfer/in
2 SE	1 LP	Jambor, Preißler	Preißler
Schwerpunkt / Micro-Degree keine		Bei Seminar: Semes	terthema (dt/en)
Organisationseinheit Studiendekanat der Fakultät für Elektrotechnik und Informatik		Modulverantwortlic Preißler	her

Webseite

https://www.dei.uni-hannover.de/de/lehre/projekte-und-labore/praxis-elektrotechnischer-methoden/

Qualifikationsziele

Die Studierenden können fachliche und überfachliche Unterstützungsangebote benennen und haben einige verglichen.

Inhalt

Im Orientierungsteil des Studieneinstiegsmoduls können die Studierenden aus verschiedenen Unterstützungsanbegoten der Leibniz Universität auswählen. Dafür erhalten sie einen Laufzettel, die Bedingungen für ein erfolgreiches Absolvieren werden während einer Auftaktveranstaltung erläutert und können im Stud.IP nachgelesen werden.

Teilnahmevoraussetzungen und -empfehlungen

keine

Literatur

Wird in der ersten Sitzung bekannt gegeben.

Weitere Angaben

Verschiedene Wahlveranststaltungen

Bitte entnehmen Sie weitere Informationen dem Stud.IP

Studieneinstiegsmodul (4/4): Technisches Projekt			Sprache Deutsch
Modultitel englisch Technical Project			Kompetenzbereich Kompetenzbereich Einführung und Schlüsselkompetenzen
Angebot im WS 2024/25 Vorlesung und Prüfung			Modultyp Pflicht
Prüfungsform Nachweis			Prüfungsbewertung unbenotet
Studienleistung 1, WiSe/SoSe			Empfohlenes Fachsemester
Studentische Arbeitsl 60 h	eistung		Frequenz unbekannt
SWS	LP (ECTS)	Dozent/in	Prüfer/in
2 P	1 LP	Preißler	
Schwerpunkt / Micro-Degree keine		Bei Seminar: Semest	erthema (dt/en)
Organisationseinheit Studiendekanat Elektrotechnik		Modulverantwortlick Arens	ner

Webseite

_

Qualifikationsziele

Die Studierenden benennen Bauteile, welche für Ihre Projektarbeit notwendig sind. Sie nutzen diese Bauteile funktionsgemäß und wenden für den Projekterfolg notwendige Programme und Anwendungen an. Sie stimmen sich in Ihrem Projektteam und zu den Aufgaben ab und präsentieren ihre Ergebnisse auf der Abschlussveranstaltung.

Inhalt

Projektabhängig

Teilnahmevoraussetzungen und -empfehlungen

keine

Literatur

wird in der ersten Sitzung bekannt gebeben

Weitere Angaben

Weitere Informationen finden Sie im Stud.IP. Während des Projekts besteht eine Anwesenheitspflicht.

Einführung in d	das Recht für Ir	Sprache	
_			Deutsch
Modultitel englisch		Kompetenzbereich	
Introduction in law f	or Engineers		Kompetenzbereich Einführung
			und Schlüsselkompetenzen
Angebot im WS 20	24/25		Modultyp
Vorlesung und Prüfu	ng		Wahl
Prüfungsform			Prüfungsbewertung
Keine		unbenotet	
Studienleistung			Empfohlenes Fachsemester
1, WiSe			-
Studentische Arbei	tsleistung		Frequenz
90 h			jährlich
SWS	LP (ECTS)	Dozent/in	Prüfer/in
2 V	3 LP	von Zastrow	von Zastrow
Schwerpunkt / Micro-Degree		Bei Seminar: Semesterthema (dt/en)	
keine			
Organisationseinheit		Modulverantwortlicher	
_		N.N.	

Webseite

https://www.jura.uni-hannover.de/de/einrichtungen/servicebereich-lehrexport/einfuehrung-in-das-rechtfuer-ingenieure/

Qualifikationsziele

In der Vorlesung mit zwei Semesterwochenstunden werden den Studierenden Grundkenntnisse im Öffentlichen Recht und im Bürgerlichen Recht vermittelt.

Inhalt

Behandelt werden im Öffentlichen Recht insbesondere Fragen des Staatsorganisationsrechts, der Grundrechte, des Europarechts und des Allgemeinen Verwaltungsrechts sowie im Bürgerlichen Recht insbesondere Fragen der Rechtsgeschäftslehre und des Rechts der gesetzlichen Schuldverhältnisse.

Teilnahmevoraussetzungen und -empfehlungen

keine

Literatur

Die Studierenden benötigen für die Vorlesung und für die Klausur aktuelle Gesetzestexte:

Basistexte Öffentliches Recht: ÖffR, Beck-Texte im dtv

Bürgerliches Gesetzbuch: BGB, Beck-Texte im dtv.

Weitere Angaben

Die Studienleistung ist eine Klausur.

Erstsemester-Fahrt			Sprache Deutsch
Modultitel englisch First Semester Trip			Kompetenzbereich Kompetenzbereich Einführung
·			und Schlüsselkompetenzen
Angebot im WS 2024	-/25		Modultyp
Vorlesung und Prüfung			Wahl-Pflicht
Prüfungsform			Prüfungsbewertung
Nachweis			unbenotet
Studienleistung		Empfohlenes Fachsemester	
keine			-
Studentische Arbeitsl	eistung		Frequenz
· ·	von Präsenz: 0 Stur	nden; davon Selbststudium:	jährlich
0 Stunden			
SWS	LP (ECTS)	Dozent/in	Prüfer/in
	-	Preißler	Preißler
Schwerpunkt / Micro-Degree		Bei Seminar: Semeste	erthema (dt/en)
keine			
Organisationseinheit		Modulverantwortlich	er
Studiendekanat der Fakultät für		Preißler	
Elektrotechnik und Info	Elektrotechnik und Informatik		

Webseite

_

Qualifikationsziele

Die Studierenden reflektieren ihr bisheriges Lernverhalten und leiten geeignete Maßnahmen zur Optimierung ab. Sie bearbeiten unter Anleitung Übungsaufgaben aus den Bereichen Mathematik, Programmieren und Elektrotechnik. Die Studierenden vernetzen sich untereinander und mit Tutor/innen und bilden neue Lerngruppen.

Inhalt

Jedes Jahr im Herbst haben die Studierenden der Fakultät für Elektrotechnik und Informatik die Gelegenheit die ersten Wochen ihres ersten Semesters zu reflektieren. Hierfür sind sie für ein Wochenende gemeinsam auf einer Exkursion. Im Rahmen der Erstsemesterfahrt können die Studierenden an verschiedenen studiengangs- und fakultätsspezifischen Angeboten teilnehmen. Die Angebote erstrecken sich neben der fachlichen Unterstützung in den Bereichen Mathematik, Elektrotechnik und Programmieren auch auf die Bereiche des sozialen und methodischen Kompetenzerwerbs. Die Bildung von Lerngruppen und die Integration in die Fachkultur wird mit der Erstsemesterfahrt unterstützt. Sie ist somit ein wichtiger Beitrag für den Studienerfolg.

Teilnahmevoraussetzungen und -empfehlungen

keine

Literatur

Wird während der Fahrt bekannt gegeben.

Geschichte der Elektrotechnik und			Sprache
Informationstechnik			Deutsch
Modultitel englisch			Kompetenzbereich
History of Electrical Engineering			Kompetenzbereich Einführung und Schlüsselkompetenzen
Angebot im WS 202	24/25		Modultyp
Vorlesung und Prüfu	ng		Wahl
Prüfungsform			Prüfungsbewertung
Hausarbeit (HA)			unbenotet
Studienleistung			Empfohlenes Fachsemester
Studienleistung nach	Bekanntgabe durch V	eranstalter/	-
Studentische Arbeit	sleistung		Frequenz
90 h			jährlich
SWS	LP (ECTS)	Dozent/in	Prüfer/in
2 V	3 LP	Mathis	Mathis
Schwerpunkt / Micro-Degree		Bei Seminar: Se	mesterthema (dt/en)
keine			
Organisationseinheit		Modulverantwo	rtlicher
Institut für Theoretische Elektrotechnik und		d TET	
Hochfrequenztechnik	(
147.1			

Webseite

_

Qualifikationsziele

Im Rahmen dieser Veranstaltung sollen die Studierenden eine Vorstellung über die Entwicklung technischer Innovationen erhalten: von der Idee bis zum fertigen Produkt. Weiterhin wird die Entwicklung der universitären Ausbildung in der Elektrotechnik des 19. und 20. Jahrhunderts geschildert.

Inhalt

Physikalische Grundlagen der Elektrotechnik im 19. Jahrhundert, Technische Umsetzung der physikalischen Grundlagen, Emanzipation der Elektrotechnik und der Aufbau von Lehrstühlen, Entstehung der modernen Informationstechnik Anfang des 20 Jahrhunderts, Aufbau der Netzwerk- und Systemtheorie mit den Anwendungen in der Nachrichtentechnik, Entstehung der Elektronik im 20. Jahrhundert, Entstehung neuer Disziplinen aus der Elektrotechnik und Informationstechnik (Regelungstechnik, etc.), Elektronik und Computer, Ausgewählte Kapitel

Teilnahmevoraussetzungen und -empfehlungen

Grundkenntnisse der Elektrotechnik (Schulkenntnisse genügen)

Literatur

E. Erb: Radios von gestern. M+K Computer Verlag, 1997.

H. Lindner: Strom - Erzeugung, Verteilung und Anwendung der Elektrizität. Rowohlt, Hamburg 1985.

M. Eckert, H. Schubert: Kristalle, Elektronen, Transistoren – von der Gelehrtenstube zur Industrieforschung. Rowohlt, Hamburg 1986.

W. König: Technikwissenschaften – Die Entstehung der Elektrotechnik aus Industrie und Wissenschaften zwischen 1880 und 1914.

Weitere Angaben

Zuordnung zum Studium Generale. Unbenoteter Nachweis.

Grundlagen des	wissenschaftli	chen Schreibens	Sprache
3			Deutsch
Modultitel englisch			Kompetenzbereich
Prep class: scientific writing and literature			Kompetenzbereich Einführung und Schlüsselkompetenzen
Angebot im WS 2024	1/25		Modultyp
Vorlesung und Prüfung	9		Pflicht
Prüfungsform			Prüfungsbewertung
Seminarleistung (SE)			unbenotet
Studienleistung			Empfohlenes Fachsemester
Studienleistung nach Bekanntgabe durch Verai		Veranstalter	-
Studentische Arbeits	eistung		Frequenz
60 h			jedes Semester
SWS	LP (ECTS)	Dozent/in	Prüfer/in
2 SE	2 LP	Bresemann	Bresemann
Schwerpunkt / Micro-Degree		Bei Seminar: Sem	esterthema (dt/en)
keine			
Organisationseinheit		Modulverantwort	licher
Institut für Antriebssysteme und		Bresemann	
Leistungselektronik			

Webseite

_

Qualifikationsziele

Die Studierenden wählen korrekte Literaturquellen (Peer-Reviewed Journals, Lehrbücher, Wikipedia, andere Quellen im Internet) aus.

Sie können die Unterschiede verschiedener Recherchetools beschreiben und diese für eigene Recherchen nutzen (Datenbanken; PubMed etc.)

Die Studierenden lesen sinnerfassend wissenschaftliche Literatur (in Englisch) und hinterfragen diese kritisch

Sie können kennzeichnende Merkmale / Eigenschaften wissenschaftlicher Literatur, insbesondere Abgrenzung zu allgemeinen Verständnistexten (zur Unterhaltung) benennen

Sie schreiben wissenschaftliche Texte & Abschlussarbeiten und halten sich dabei an die geläufigen Gliederungspunkte:

Aufbau und Gliederung, Essenzielle Inhalte, Do's und Don'ts für Datenpräsentation (Grafiken, Achsbeschriftungen etc.)

Die Studierenden können Plagiarismus, geistiges Eigentum und korrektes Zitieren definieren.

Die Studierenden können technische Hilfsmittel (z.B. KI-basierte Tools) kompetent zur Verbesserung Ihrer wissenschaftlichen Texte einsetzen

Inhalt

Diese Veranstaltung ist eine Begleitung zur Bachelorarbeit und sollte von jedem Studierenden vor bzw. während der Anfertigung der Bachelorarbeit belegt werden.

Frei einteilbares Selbststudium mit online Video-Präsentationen und zur Verfügung gestelltem Material, ergänzt durch 6 Termine in Präsenz für vertiefendes Erarbeiten und Diskussion der Inhalte. Der Präsenztermin findet interaktiv als Diskussion mit den Teilnehmenden statt. Als Vorbereitung für jeden

Präsenztermin soll von allen Teilnehmenden die entsprechende online Präsentation gehört sowie eine entsprechende Aufgabe bearbeitet werden. Im jeweiligen Präsenztermin werden die Aufgaben beispielhaft durchgesprochen und Fragen beantwortet.

Stand: 19.09.2024

Teilnehmende werden aufgeteilt in 2 Gruppen zu jeweils 10 Personen (max. 20 Teilnehmende je Semester). Die Veranstaltung soll jedes Semester angeboten werden.

Die gesamte Veranstaltung wird in Englischer Sprache abgehalten.

Teilnahmevoraussetzungen und -empfehlungen

Englisch, Grundlagen der wissenschaftlichen Literatur, Grundlagen Textverarbeitungsprogramme (z.B. MS Word)

Literatur

"A Manual for Writers of Research Papers, Theses, and Dissertations, Ninth Edition: Chicago Style for Students and Researchers", Kate L. Turabian; ISBN: 022643057X

"Science Research Writing: For Native And Non-native Speakers Of English (second Edition)", Hilary Glasman-Deal; ISBN: 1786347849

WWW: https://www.bu.edu/chemed/resources/undergraduates-guide-to-writing-in-the-sciences/

Patentrecht für die Ingenieurspraxis			Sprache Deutsch
Modultitel englisch Patent Law for Engineers' Practical Use			Kompetenzbereich Kompetenzbereich Einführung und Schlüsselkompetenzen
Angebot im WS 2024/25 Vorlesung und Prüfung			Modultyp Wahl
Prüfungsform Klausur (90 min)			Prüfungsbewertung unbenotet
Studienleistung Studienleistung nach Bekanntgabe durch Veranstalter			Empfohlenes Fachsemester -
Studentische Arbeitsl Workload: Gesamt 90	_	Selbstlernen 62 h	Frequenz jährlich
SWS	LP (ECTS)	Dozent/in	Prüfer/in
2 V + 1 Ü + 1 P	3 LP	Schiller	
Schwerpunkt / Micro-Degree keine		Bei Seminar: Se	mesterthema (dt/en)
Organisationseinheit Institut für Informationsverarbeitung		Modulverantwo Schiller	rtlicher

Webseite

http://www.tnt.uni-hannover.de

Qualifikationsziele

Kennenlernen der Prinzipien wichtiger Patentsysteme und des deutschen Arbeitnehmer-Erfinderrechts. Praktische Erfahrungen mit Möglichkeiten und Grenzen der Patentrecherche. Wissen und praktische Erfahrungen zu Patentklassifikationssystemen. Wissen über die Rolle der Bestandteile von Patentanmeldungen. Sicherheit bei angemessener Deutung von Verfahrensdokumenten. Überblick und praktische Erfahrungen zu Möglichkeiten der elektronischen Akteneinsicht. Kennenlernen von Aspekten der Patentstrategie.

Inhalt

Geschichtliche Grundlagen. Typische Chronologie einer Patentfamilie, Beteiligte und Verfahrensablauf. Arbeitnehmererfinderrecht in DE: ArbEG, Rechte und Pflichten. Patentrecherche: Möglichkeiten und Fallen. Patentrecherchearten: Stichwortbasiert, klassifikationsbasiert, namensbasiert, "quotation mining". Patentdokumente: Arten, Aufbau und Deutung. Vorgehen gegen Nichtberechtigte: Eingaben Dritter, Art63EPÜ, Einspruch. Formalien bei der Anmeldung: Wer, wie, wo. Anspruchsklassen, Breite und "Radius". Ausnahmen von Patentierbarkeit. Das Prüfungsverfahren: Interpretation von Recherchenberichten und Prüfbescheiden. Prioritätsrecht, Nachanmeldungen, Teilanmeldungen. Patentakten, elektronische Akteneinsicht. Besonderheiten ausgewählter Patentsysteme: US, PCT, EPÜ, Einheitspatent. Patentstrategien.

Teilnahmevoraussetzungen und -empfehlungen

keine

Literatur

WIPO: Understanding Industrial Property (https://www.wipo.int/edocs/pubdocs/en/wipo_pub_895_2016. pdf). Wikipedia: Geschichte des Patentrechts (https://de.wikipedia.org/wiki/Geschichte_des_Patentrechts). Peter Kurz: Weltgeschichte des Erfindungsschutzes. Erfinder und Patente im Spiegel der Zeiten.

Heymanns, Köln u.a. 2000, ISBN 978-3-452-24331-7. EPA: Leitfaden zum Europäischen Patent, Juli 2023 (https://link.epo.org/web/legal/guide-epc/de-how-to-get-a-european-patent-2023.pdf).

Stand: 19.09.2024

Weitere Angaben

Informationsaustausch über STUD.IP. Im LSF und STUD.IP wird diese Veranstaltung unter dem Titel 'Patentrecht in der Praxis von Ingenieuren' geführt.

Studium Gen	erale – Lehrverans	Sprache	
Lehrangebot	der LUH	Deutsch	
Modultitel englis	sch	Kompetenzbereich	
Studium generale			Kompetenzbereich Einführung
			und Schlüsselkompetenzen
Angebot im WS	2024/25		Modultyp
Vorlesung und Pri	üfung		Wahl
Prüfungsform			Prüfungsbewertung
noch nicht festge	legt		unbenotet
Studienleistung			Empfohlenes Fachsemester
Studienleistung n	ach Bekanntgabe durch	Veranstalter	-
Studentische Arb	peitsleistung		Frequenz
Gesamt: 0 Stunde	n; davon Präsenz: 0 Stu	nden; davon Selbststudium:	jedes Semester
0 Stunden			
SWS	LP (ECTS)	Dozent/in	Prüfer/in
- N.N.			N.N.
Schwerpunkt / Micro-Degree Bei Semina		Bei Seminar: Semeste	erthema (dt/en)
keine	-		
Organisationseinheit		Modulverantwortlich	er
		N.N.	
\\/abaa:4a		<u> </u>	

Webseite

-

Qualifikationsziele

Inhalt

Im Studium Generale sind mindestens 8 Leistungspunkte zu erwerben, es kann aus dem gesamten Angebot der Universität gewählt werden. Empfohlen werden Fächer aus den Bereichen Wirtschaftswissenschaften, Recht und Fremdsprachen! Bescheinigte Gremienarbeit an der LUH kann angerechnet werden.

Teilnahmevoraussetzungen und -empfehlungen

keine

Literatur

Weitere Angaben

Im Studium Generale sind mindestens 8 Leistungspunkte zu erwerben, es kann aus dem gesamten Angebot der Universität gewählt werden. Bescheinigte Gremienarbeit an der LUH kann angerechnet werden.

Im Studium Generale sind mindestens 8 Leistungspunkte zu erwerben, es kann aus dem gesamten Angebot der Leibniz Universität gewählt werden.

Bitte beim jeweiligen Dozenten zu Beginn der Veranstaltung erkundigen, ob er eine Nachweis-"Prüfung" abnimmt!!!

Systeme zur zukünftigen Energieoptimierung und -			Sprache	
vermarktung	Deutsch			
Modultitel englisch			Kompetenzbereich	
Optimization and Marketing of Future Electric Power Systems			Kompetenzbereich Einführung und Schlüsselkompetenzen	
Angebot im WS 2024	/25		Modultyp	
Vorlesung und Prüfung			Wahl	
Prüfungsform			Prüfungsbewertung	
mündl. Prüfung (MP)			unbenotet	
Studienleistung			Empfohlenes Fachsemester	
Studienleistung nach B	ekanntgabe durch \	<i>V</i> eranstalter	-	
Studentische Arbeitsl	eistung		Frequenz	
90 h			jährlich	
SWS	LP (ECTS)	Dozent/in	Prüfer/in	
2 V 3 LP Sturm			Sturm	
Schwerpunkt / Micro-Degree keine		Bei Seminar: Semeste	erthema (dt/en)	
Organisationseinheit		Modulverantwortlich	er	
Institut für Elektrische Energiesysteme/IfES		S IEH	IEH	

Webseite

http://www.si.uni-hannover.de

Qualifikationsziele

Die Studierenden kennen die Grundbegriffe der Energiewirtschaft. Sie kennen das Energiemanagement insbesondere bei dezentralen Energiesystemen. Sie kennen die Markstrukturen, die Risikobewertung und die Auswirkungen auf das Energiemanagement.

Inhalt

Bechreibung der Marktanforderungen;

Beschreibung des Energiewirtschaftlichen Umfeldes;

Darstellung der optimierten Energienutzung durch modulare Systeme;

Beschreibung der Randbedingungen für Deregulierung und Liberalisierung;

Darstellung der Anforderungen an die Energievermarktung;

Erläuterung der Prozesskette und Geschäftsprozesse;

Maßnahmen der Integration in bestehende Systeme;

praktische Anwendungsbeispiele;

Teilnahmevoraussetzungen und -empfehlungen

keine

Literatur

Technikrecht			Sprache
			Deutsch
Modultitel englisch			Kompetenzbereich
Law of Engineering			Kompetenzbereich Einführung
			und Schlüsselkompetenzen
Angebot im WS 202	4/25		Modultyp
Vorlesung und Prüfun	g		Wahl
Prüfungsform			Prüfungsbewertung
Klausur (120 min)			unbenotet
Studienleistung			Empfohlenes Fachsemester
1, WiSe/SoSe			-
Studentische Arbeits	leistung		Frequenz
150 h			jedes Semester
SWS	LP (ECTS)	Dozent/in	Prüfer/in
3 SE	5 LP	von Zastrow	
Schwerpunkt / Micro-Degree Bei Ser		Bei Seminar: Sem	esterthema (dt/en)
keine			
Organisationseinheit		Modulverantwort	licher
J		von Zastrow	

Webseite

https://www.jura.uni-hannover.de/de/lehrexport/technikrecht/

Qualifikationsziele

Nach erfolgreicher Absolvierung der Vorlesung und der Klausur kennen die Studierenden wesentliche Grundlagen des Technikrechts. Die Studierenden sind in der Lage den (beruflichen) Einsatz von Technik unter Berücksichtigung rechtlicher Anforderungen auszugestalten resp. rechtlich zu bewerten. Die Studierenden sind in der Lage hierbei rechtliche Problemfelder zu erkennen und grundlegende Anforderungen umzusetzen bzw. zu sehen, dass ggf. vertiefter rechtlicher Rat eingeholt werden sollte. In diesem Rahmen können sie sich mit Anwälten und Behörden/Gerichten in einer juristischen Fachsprache verständigen und besitzen die erforderlichen Grundkenntnisse, um sich in rechtliche Fragestellungen im Rahmen ihrer beruflichen Tätigkeiten vertieft einzuarbeiten.

Nach erfolgreicher Absolvierung der Vorlesung "Technikrecht in der Praxis" und der Studienleistung verfügen die Studierenden in exemplarischen Bereichen des Technikrechts über vertiefte Kenntnisse.

Inhalt

In der Vorlesung "Technikrecht" werden den Studierenden verschiedene Rechtsgebiete im Bürgerlichen Recht und im Öffentlichen Recht unter dem besonderen Blickwinkel des Einsatzes von Technik vermittelt. Neben allgemeinen Grundlagen ist dies im Rahmen des Bürgerlichen Rechts insb. eine vertiefende Darstellung des vertraglichen und gesetzlichen Haftungsrecht; Schwerpunkte hierbei sind das kaufrechtliche und werkvertragsrechtliche Gewährleistungsrecht einschließlich der VOB/B und dem Deliktsrecht, unter besonderer Berücksichtigung der Gefährdungshaftung (Produkt-, Anlagen- und Umwelthaftung). Im Rahmen des Immaterialgüterrechts werden das Urheber-, Patent-, Gebrauchsmuster-, Design-, Sortenschutz- und Markenschutzrecht dargestellt. Im Rahmen des Öffentlichen Rechts wird das Immissionsschutz-, das Wasserschutz-, das Bodenschutz-, das Kreislaufwirtschafts-, das Gentechnologie- und das Produktsicherheitsrecht vertieft dargestellt. Weitere Themen sind insb. das Datenschutzrecht und das Recht im Rahmen neuer Arbeitsmethoden, insb. Building

Information Modeling und Drohnen.

In der Vorlesung "Technikrecht – in der Praxis" werden den Studierenden verschiedene Rechtsgebiete des Technikrechts vertiefter dargestellt. Die Themen sollen insb. mit der Unterstützung von Gastdozenten aus der Praxis vermittelt werden.

Stand: 19.09.2024

Teilnahmevoraussetzungen und -empfehlungen

Die vorherige Teilnahme an der Veranstaltung "Einführung in das Recht für Ingenieure" wird empfohlen.

Literatur

Die Vorlesung begleitende Materialien werden in StudIP zur Verfügung gestellt.

Weitere Angaben

- •i.d. Lehrveranstaltung "Technikrecht" ist eine SL in Form einer Klausur (120 Minuten) zu erbringen 4 LP
- •i.d. Lehrveranstaltung "Technikrecht in der Praxis" ist eine SL in Form einer Studienleistung (2 Seiten maschinell geschrieben) 1 LP

Sowohl die Vorlesung als auch die Studienleistungen werden im Winter- und Sommersemester als Blockveranstaltung in der vorlesungsfreien Zeit angeboten. Einzelne Themen sollen mit Unterstützung von Gastdozenten aus der Praxis vertieft werden. Die Veranstaltung "Technikrecht" wird zusammen mit "Technikrecht – in der Praxis" angeboten, für die eine weitere Studienleistung in Form einer Studienleistung erbracht werden soll. Aktuelle Informationen zur laufenden Veranstaltung in StudIP.

Transformation des Energiesystems			Sprache Deutsch
Modultitel englisch Transforming the Energy System			Kompetenzbereich Kompetenzbereich Einführung
Angebot im WS 2024/25 Vorlesung und Prüfung			und Schlüsselkompetenzen Modultyp Wahl
Prüfungsform Nachweis			Prüfungsbewertung unbenotet
Studienleistung 1, WiSe/SoSe			Empfohlenes Fachsemester
Studentische Arbeitsl 30 h	eistung		Frequenz jedes Semester
SWS	LP (ECTS)	Dozent/in	Prüfer/in
2 V 1 LP Schöber, Hanke- Rauschenbach			Hanke-Rauschenbach
Schwerpunkt / Micro-Degree keine		Bei Seminar: Semes	terthema (dt/en)
Organisationseinheit Leibniz Forschungszentrum Energie 2050		Modulverantwortlicher Schöber	

Webseite

https://www.energie.uni-hannover.de/de/information/veranstaltungen/ringvorlesung/

Qualifikationsziele

Ziele der Ringvorlesungen sind ein tieferes Verständnis bei der Erzeugung und Nutzung nachhaltiger Energien und Einblicke in die aktuelle Forschung zu erhalten sowie die Möglichkeit mit Experten zu diskutieren.

Inhalt

Die Nutzung der Energie und deren Auswirkungen auf Mensch und Umwelt ist eines der wichtigsten Themen unserer Gesellschaft. Die Transformation eines im Wesentlichen auf fossilen Energieträgern beruhenden Energiesystems zu einem Energiesystem, das auf regenerative Energien setzt, wirft technische und gesellschaftliche Fragen auf.

Die Ringvorlesung hat das Ziel ethische, historische, sozialwissenschaftliche sowie technische Fragestellungen zur aktuellen Transformation des deutschen Energiesystems zu erörtern, sowie Probleme und Lösungsansätze zu skizzieren. Hiermit werden Aspekte der Ziele für eine nachhaltige Entwicklung (englisch: Sustainable Development Goals, SDGs) diskutiert, insbesondere das Ziel für eine bezahlbare und saubere Energie (SDG-7).

Es werden Referenten aus verschiedenen wissenschaftlichen Bereichen aus Forschung, Wirtschaft, Gesellschaft und Politik eingeladen.

Nach dem Vortrag erfolgt eine Diskussion, bei der alle Teilnehmer sich einzubringen können.

Teilnahmevoraussetzungen und -empfehlungen

keine

Literatur

keine

Weitere Angaben

Die Vorlesung findet im Sommersemester und Wintersemester an jeweils 7 Terminen in einem zweiwöchigen Rhythmus statt.

Durch die Teilnahme an mind. 6 Veranstaltungen und einer zweiseitigen Belegarbeit (Zusammenfassung einer Veranstaltung) können sich Studierende der Fakultät für Elektrotechnik und Informatik 1 LP als Tutorium anrechnen lassen. Es kann innerhalb eines Semesters die Prüfungsleistung erbracht werden.

Stand: 19.09.2024

Tutorium: Elektrorennwagen HorsePower I			Sprache
3			Deutsch
Modultitel eng	lisch		Kompetenzbereich
Project: Electric	Racecar HorsePower		Kompetenzbereich Einführung
			und Schlüsselkompetenzen
Angebot im W	S 2024/25		Modultyp
Vorlesung und F	Prüfung		Wahl
Prüfungsform			Prüfungsbewertung
noch nicht fest	gelegt		unbenotet
Studienleistung			Empfohlenes Fachsemester
1, WiSe/SoSe			-
Studentische A	rbeitsleistung		Frequenz
120 h			jedes Semester
SWS	LP (ECTS)	Dozent/in	Prüfer/in
5 P	4 LP	Maier	Maier
Schwerpunkt / Micro-Degree		Bei Seminar: Se	mesterthema (dt/en)
keine			
Organisationseinheit		Modulverantwo	rtlicher
-		Warnecke	

Webseite

http://www.horsepower-hannover.de

Qualifikationsziele

Inhalt

In diesem Tutorium sammeln die Teilnehmer Praxiserfahrung in einem angewandten Ingenieursprojekt. Sie beteiligen sich im Rahmen der "Formula Student" an der Entwicklung eines Elektrorennwagens, etwa bei der Entwicklung eines Planetengetriebes, der Konstruktion eines Batteriepakets oder der Anfertigung eines Businessplans.

Dabei üben sie besonders das selbständige Arbeiten, die Zusammenarbeit, Organisation und Kommunikation sowohl innerhalb des Fachteams (Elektrik, Fahrwerk usw.) als auch im Gesamtteam. Zudem wird die Anwendung der englischen Fachsprache trainiert, da die Formula Student komplett auf Englisch organisiert wird und alle Regelwerke ausschließlich auf Englisch vorliegen.

Teilnahmevoraussetzungen und -empfehlungen

Je nach Themenvergabe. Grundkenntnisse in Englisch.

Literatur

Das gültige Reglement der Formula Student (www.fsaeonline.com -> FSAE Rules).

Weitere Angaben

Die Veranstaltung kann nur in Absprache mit der Teamleitung von HorsePower sowie den betreuenden Professoren belegt werden. Zum erfolgreichen Abschluss des Tutoriums muss eine schriftliche Hausarbeit angefertigt werden. Die Themenvergabe sowie Betreuung der Hausarbeit soll auf Vorschlag der Teamleitung durch ein fachlich geeignetes Institut übernommen werden.

1.3. Kompetenzbereich Energietechnische Grundkompezenten

Englischer Titel: Basic power engineering competences

Information zum : 30 LP, WP

Elektrische Ene	ergiespeichersyste	eme	Sprache
	,		Deutsch
Modultitel englisch	1		Kompetenzbereich
Electrical energy sto	rage systems		Kompetenzbereich
			Energietechnische
			Grundkompezenten
Angebot im WS 20	24/25		Modultyp
Vorlesung und Prüft	ıng		Wahl-Pflicht
Prüfungsform			Prüfungsbewertung
Klausur (90 min)			benotet
Studienleistung			Empfohlenes Fachsemester
1, WiSe			-
Studentische Arbei	tsleistung		Frequenz
Gesamt: 150 Stunde	en; davon Präsenz: 75 S	Stunden; davon	jährlich
Selbststudium: 75 S	tunden		
SWS	LP (ECTS)	Dozent/in	Prüfer/in
2 V + 2 Ü + 1 L	5 LP	Hanke-	Hanke-Rauschenbach
		Rauschenbach	
Schwerpunkt / Micro-Degree		Bei Seminar: Sem	esterthema (dt/en)
keine			
Organisationseinheit		Modulverantwortl	icher
Institut für Elektrische Energiesysteme, FG		Bensmann	
Elektrische Energiespeichersysteme			

Webseite

http://www.ifes.uni-hannover.de/ees.html

Qualifikationsziele

Die Teilnehmerinnen und Teilnehmer der Veranstaltung verfügen über einen profunden Überblick über verschiedene Speichertechnologien. Sie kennen alle nötigen Kenngrößen zum Vergleich der Technologien untereinander. Für jede Technologie sind die Teilnehmerinnen und Teilnehmer mit dem Aufbau, dem Funktionsprinzip, technischen Realisierungen und der groben Kostenstruktur vertraut. Ferner sind sie in der Lage das Betriebsverhalten des jeweiligen Speichers mit Hilfe eines Minimalmodells zu beschreiben. Darüber hinaus sind die Teilnehmerinnen und Teilnehmer mit den typischen Anwendungsfeldern für Speicher vertraut und kennen jeweils die Anforderungen und die typisch eingesetzten Speichertechnologien.

Inhalt

Einleitung und Übersicht (Klassifikation, Kenngrößen);

Speicherung in Form von elektrischer und magnetischer Feldenergie (Superkondensatoren, Supraleitende Spulen);

Speicherung in Form von mechanischer Energie (Pumpspeicher, Druckluftspeicher, Schwungradspeicher);

Speicherung in Form von chemischer Energie (Akkumulatoren, Redoxflow-Speicher, Wasserelektrolyse und darauf aufbauende Speicher-/ Nutzungspfade);

Speicherung in Form von thermischer Energie;

Einsatzfelder, Anforderungen und eingesetzte Speichertechnologien (tragbare Kleingeräte, Traktion, stationäre Energieversorgung)

Stand: 19.09.2024

Teilnahmevoraussetzungen und -empfehlungen

keine besonderen Vorkenntnisse nötig

Literatur

M. Sterner, I. Stadler: Energiespeicher – Bedarf, Technologien, Integration, Springer-Verlag, Berlin 2014

A. Hauer, J. Quinnell, E. Lävemann: Energy Storage Technologies - Characteristics, Comparison, and Synergies, in: Transition to Renewable Energy Systems, ed. D. Stolten, Wiley-VCH, Weinheim 2013

VDI-Bericht Band 2058: Elektrische Energiespeicher. Schlüsseltechnologie für energieeffiziente Anwendungen, VDI-Verlag, Düsseldorf, 2009

Weitere Angaben

Titel bis SoSe 2022: Energiespeicher I mit Laborübung als Studienleistung mit Laborübung als Studienleistung

Diese Veranstaltung umfasst eine Studienleistung in Form eines Laborversuchs für den 1 LP (siehe Bemerkungen) angerechnet wird. Die Terminabstimmung erfolgt während des Semesters.

Elektrische Ene	ergieversorgung	I	Sprache Deutsch	
Modultitel engliscl	 h	Kompetenzbereich		
Electric Power Syste			Kompetenzbereich	
·			Energietechnische	
			Grundkompezenten	
Angebot im WS 20	024/25	Modultyp		
Vorlesung und Prüf	ung	Wahl-Pflicht		
Prüfungsform			Prüfungsbewertung	
Klausur (100 min)			benotet	
Studienleistung		Empfohlenes Fachsemester		
1, WiSe		-		
Studentische Arbei	itsleistung	Frequenz		
Gesamt: 150 Stunde	en; davon Präsenz: 60	jährlich		
Selbststudium: 90 S	tunden			
SWS	LP (ECTS)	Dozent/in	Prüfer/in	
2 V + 1 Ü + 1 L	5 LP	Hofmann	Hofmann	
Schwerpunkt / Micro-Degree		Bei Seminar: Se	Bei Seminar: Semesterthema (dt/en)	
keine				
Organisationseinhe	eit	Modulverantwo	Modulverantwortlicher	
Institut für Elektrisc	he Energiesysteme/lfE	S IEE	IEE	

Webseite

http://www.iee.uni-hannover.de/

Qualifikationsziele

Die Studierenden erlangen eine Vertiefung ihres Wissens in Bezug auf den Aufbau und die Wirkungsweise von elektrischen Energiesystemen und deren Betriebsmitteln. Nach erfolgreichem Abschluss des Moduls können die Studierenden:

- symmetrische und unsymmetrische Drehstromsysteme und deren Betriebsmittel (Generatoren, Motoren, Ersatznetze, Leitungen, Transformatoren, Drosselspulen, Kondensatoren) mathematisch beschreiben
- die Methode der Symmetrischen Komponenten zur Überführung symmetrischer Drehstromsysteme in drei Einphasensysteme auf elektrische Energieversorgungssysteme anwenden
- die Ersatzschaltungen der Betriebsmittel in Symmetrischen Komponenten beschreiben, parametrieren und anwenden
- das Verfahren zur Berechnung von symmetrischen und unsymmetrischen Quer- und Längsfehlern anwenden

Inhalt

Mathematische Beschreibung des symmetrischen und unsymmetrischen Drehstromsystems. Methode der Symmetrischen Komponenten zur Überführung symmetrischer Drehstromsysteme in drei Einphasensysteme. Kennenlernen der Ersatzschaltungen der Betriebsmittel in Symmetrischen Komponenten. Maßnahmen zur Komponenten und zur Kurzschlussstrombegrenzung. Berechnung von symmetrischen und unsymmetrischen Quer- und Längsfehlern.

Vorlesungsinhalte:

- 1. Einführung, Zeigerdarstellung, Symmetrisches Drehstromsystem, Strangersatzschaltung
- 2. Unsymmetrisches Drehstromsystem, Symmetrische Komponenten (SK)

- 3. Generatoren
- 4. Motoren und Ersatznetze
- 5. Transformatoren
- 6. Leitungen
- 7. Drosselspulen, Kondensatoren, Kompensation
- 8. Kurzschlussverhältnisse
- 9. Symmetrische und unsymmetrische Querfehler
- 10. Symmetrische und unsymmetrische Längsfehler

Teilnahmevoraussetzungen und -empfehlungen

keine

Literatur

Hofmann, Lutz: Elektrische Energieversorgung Band 1: Grundlagen, Systemaufbau und Methoden. Berlin, De Gruyter Oldenbourg, 2019.

Stand: 19.09.2024

Hofmann, Lutz: Elektrische Energieversorgung Band 2: Betriebsmittel und ihre quasistationäre Modellierung. Berlin, De Gruyter Oldenbourg, 2019.

Hofmann, Lutz: Elektrische Energieversorgung Band 3: Systemverhalten und Berechnung von Drehstromsystemen. Berlin, De Gruyter Oldenbourg, 2019.

Weitere Angaben

mit Laborübung als Studienleistung

Die Studienleistung besteht aus Kleingruppenübungen, die den Lehrinhalt durch praxisrelevante Beispielaufgaben weiter vertiefen. Die Studienleistung gilt nach dem Bestehen einer Prüfung im ILIAS-System, die im Rahmen der Kleingruppenübung stattfindet, als bestanden.

Hochspannung	stechnik I		Sprache	
			Deutsch	
Modultitel englisch	1	Kompetenzbereich		
High Voltage Technic	que l		Kompetenzbereich	
			Energietechnische	
			Grundkompezenten	
Angebot im WS 20	24/25	Modultyp		
nur Prüfung		Wahl-Pflicht		
Prüfungsform			Prüfungsbewertung	
Klausur (120 min)		benotet		
Studienleistung		Empfohlenes Fachsemester		
1		-		
Studentische Arbeitsleistung			Frequenz	
Workload: Gesamt 150 h / Präsenz 56 h / Selbstlernen 94 h			jährlich	
SWS	LP (ECTS)	Dozent/in	Prüfer/in	
2 V + 1 Ü + 1 L	5 LP		Werle	
Schwerpunkt / Micro-Degree		Bei Seminar: Sei	Bei Seminar: Semesterthema (dt/en)	
keine				
Organisationseinhe	it	Modulverantwo	Modulverantwortlicher	
Institut für Elektrisch	ne Energiesysteme	Werle	Werle	

Webseite

http://www.si.uni-hannover.de/

Qualifikationsziele

Die Studierenden erlangen Grundkenntnisse der Hochspannungserzeugung und -messung sowie zu den Themen elektrostatisches Feld und Durchschlag in Isolierstoffen.

Inhalt

Einführung in die Hochspannungstechnik

Erzeugung hoher Wechselspannungen

Erzeugung hoher Gleichspannungen

Erzeugung hoher Stoßspannungen

Messung hoher Wechselspannungen

Messung hoher Gleichspannungen

Messung hoher Stoßspannungen

Grundlagen des elektrostatischen Feldes

Elektrische Felder in Isolierstoffen

Durchschlagmechanismen

Durchschlag in Gasen

Durchschlag in flüssigen und festen Isolierstoffen.

Teilnahmevoraussetzungen und -empfehlungen

Grundlagen Elektrotechnik

Grundlagen Physik.

Literatur

M. Beyer, W. Boeck, K. Möller, W. Zaengl: Hochspannungstechnikl; Springer Verlag

G. Hilgarth: Hochspannungstechnik; Teubner Verlag

D. Kind, K. Feser: Hochspannungsversuchstechnik; Vieweg Verlag

H. Ryan: High Voltage Engineering and testing; IEE Power and Energy series 32.

Weitere Angaben

ab SoSe 2021 jährlich im SoSe angeboten

mit Laborübung als Studienleistung

Für PO2017/5LP ist über den 1L-Laboranteil eine Studienleistung nachzuweisen.

Hochspannungsvorführung in der Hochspannungshalle.

Leistungselektr	onik I		Sprache	
		Deutsch		
Modultitel englisch			Kompetenzbereich	
Power Electronics I			Kompetenzbereich	
			Energietechnische	
			Grundkompezenten	
Angebot im WS 20	24/25		Modultyp	
Vorlesung und Prüfu	ng		Wahl-Pflicht	
Prüfungsform			Prüfungsbewertung	
Klausur (90 min)			benotet	
Studienleistung			Empfohlenes Fachsemester	
1, WiSe			-	
Studentische Arbei	tsleistung		Frequenz	
Gesamt: 150 Stunde	n; davon Präsenz: 60	Stunden; davon	jährlich	
Selbststudium: 90 St	tunden			
SWS	LP (ECTS)	Dozent/in	Prüfer/in	
2 V + 1 Ü + 1 L	5 LP	Mertens	Mertens	
Schwerpunkt / Micro-Degree keine		Bei Seminar: Se	mesterthema (dt/en)	
Organisationseinheit		Modulverantwo	Modulverantwortlicher	
Institut für Antriebssysteme und		Mertens, IAL		
Leistungselektronik,	FG Leistungselektroni	ik,		
Institut für Antriebss	systeme und			
Leistungselektronik				

Webseite

http://www.ial.uni-hannover.de/

Qualifikationsziele

Die Studierenden erwerben in diesem Modul grundlegende Kenntnisse der Funktionsprinzipien, Bauelemente und Schaltungen der Leistungselektronik.

Nach erfolgreichem Abschluss der LV können die Studierenden

- Aufbau und Eigenschaften von Leistungshalbleitern darlegen
- Aktive und passive Bauelemente für die jeweilige Anwendung passend auswählen und dimensionieren
- netzgeführte Stromrichter und ihr Betriebsverhalten sowie ihre Netzrückwirkungen charakterisieren und berechnen
- Einfache selbstgeführte Stromrichter (Gleichstromsteller) konfigurieren und berechnen
- Dreiphasige Wechselrichter erläutern und für den jeweiligen Einsatzfall berechnen
- Einfache Systeme aus mehreren Stromrichtern konfigurieren

Inhalt

Leistungselektronik (LE) zur Energieumformung mit hohem Wirkungsgrad, Anwendungsfelder der LE, Bauelemente der LE, Netzgeführte Gleichrichter, Netzrückwirkungen, Gleichstromsteller, Wechselrichter mit eingeprägter Spannung, zusammengesetzte Stromrichter und Umrichter

Teilnahmevoraussetzungen und -empfehlungen

Grundlagen der Elektrotechnik (notwendig), Grundlagen der Halbleitertechnik (empfohlen)

Literatur

K. Heumann: Grundlagen der Leistungselektronik

Vorlesungsskript

Weitere Angaben

mit Laborübung als Studienleistung

Für PO2017/5LP ist über den 1L-Laboranteil eine Studienleistung nachzuweisen.

Nachhaltige Ve	erbrennungstech	nik	Sprache	
			Deutsch	
Modultitel englisc	h		Kompetenzbereich	
Combustion Techno	logy		Kompetenzbereich	
			Energietechnische	
			Grundkompezenten	
Angebot im WS 20	024/25		Modultyp	
nur Prüfung			Wahl-Pflicht	
Prüfungsform			Prüfungsbewertung	
Klausur (90 min)			benotet	
Studienleistung			Empfohlenes Fachsemester	
1			-	
Studentische Arbe	itsleistung		Frequenz	
Gesamt: 150 Stunde	en; davon Präsenz: 60	Stunden; davon	jährlich	
Selbststudium: 90 S	Stunden			
SWS	LP (ECTS)	Dozent/in	Prüfer/in	
2 V + 1 Ü + 1 L	5 LP		Dinkelacker	
Schwerpunkt / Micro-Degree		Bei Seminar: Se	mesterthema (dt/en)	
keine				
Organisationseinho	eit	Modulverantwo	rtlicher	
Institut für Technische Verbrennung		Dinkelacker	Dinkelacker	
1A/ 1 ''		•		

Webseite

http://www.itv.uni-hannover.de

Qualifikationsziele

Das Modul vermittelt die Grundlagen der Verbrennungstechnik und ihre Anwendung. Nach erfolgreicher Absolvierung des Moduls sind die Studierenden in der Lage,

- •verschiedene Verbrennungen zu unterscheiden und im Detail zu beschreiben,
- •Verbrennungsvorgänge zu bilanzieren,
- •typische Anwendungsbeispiele für unterschiedliche Verbrennungstypen zu erläutern,
- •Potentiale zur Reduzierung von Schadstoffemissionen aufzuzeigen und zu bewerten.

Inhalt

Inhalte:

- •Grundbegriffe, Grundlagen der Flammentypen und Flammenausbreitung
- •Stoffmengen-, Massen- und Energiebilanz
- Reaktionskinetik
- Zündprozesse
- Kennzahlen
- •Berechnungs- und Modellansätze
- Schadstoffbildung
- •Technische Anwendungen

Teilnahmevoraussetzungen und -empfehlungen

Empfohlen: Grundbegriffe der Thermodynamik

Literatur

Dinkelacker, Leipertz: Einführung in die Verbrennungstechnik

Joos: Technische Verbrennung

Warnatz, Maas, Dibble: Verbrennung

Turns: An Introduction to Combustion: Concepts and Application

Weitere Angaben

Titel bis SoSe 2023: "Verbrennungstechnik."

Zum Modul gehört die Teilnahme an einem Laborversuch.

Strömungsmecha	anik		Sprache
			Deutsch
Modultitel englisch			Kompetenzbereich
Fluid Dynamics			Kompetenzbereich
			Energietechnische
			Grundkompezenten
Angebot im WS 2024	1/25		Modultyp
Vorlesung und Prüfung)		Wahl-Pflicht
Prüfungsform			Prüfungsbewertung
Klausur (90 min)			benotet
Studienleistung			Empfohlenes Fachsemester
1			-
Studentische Arbeitsl	eistung		Frequenz
Gesamt: 150 Stunden;	davon Präsenz: 60 S	Stunden; davon	jährlich
Selbststudium: 90 Stur	nden		
SWS	LP (ECTS)	Dozent/in	Prüfer/in
2 V + 2 Ü	5 LP	Seume	Seume
Schwerpunkt / Micro	-Degree	Bei Seminar: Se	mesterthema (dt/en)
keine			
Organisationseinheit		Modulverantwo	rtlicher
Institut für Turbomasc	hinen und Fluid-	Seume	
Dynamik			
		:	

Webseite

http://www.tfd.uni-hannover.de/vorlesung.html

Qualifikationsziele

Nach erfolgreicher Absolvierung des Moduls sind die Studierenden in der Lage:

- einfache Strömungsphänomene zu beschreiben,
- die allgemeinen Gleichungen der Massen- und Impulserhaltung herzuleiten,
- die Bedeutung der einzelnen Terme der Navier-Stokes-Gleichungen zu diskutieren,
- für vereinfachte Anwendungsfälle der Strömungsmechanik die Strömungsgrößen zu lösen (inkompressibel und kompressibel).

Inhalt

Im Rahmen der Vorlesung werden Grundlagen der Strömungslehre vermittelt. Hierfür werden Strömungseigenschaften von Fluiden erläutert und die Grundgleichungen zur Beschreibung der Dynamik von Strömungen vorgestellt. Zunächst wird die inkompressible Strömungsmechanik behandelt, in deren Kontext die Hydrostatik sowie Hydrodynamik Lehrinhalte sind und die Grundgleichungen der Strömungsmechanik, wie etwa die Kontinuitätsgleichung sowie Bernoulli-Gleichung, werden hergeleitet. Durch die Anwendung der Grundgleichungen auf technisch relevante, interne und externe Strömungen wird den Studierenden das strömungsmechanische Verständnis in Bezug auf technische Problemstellungen vermittelt. In Hinblick auf aufbauende Vorlesungen wird eine Einleitung in die Gasdynamik gegeben.

Teilnahmevoraussetzungen und -empfehlungen

Thermodynamik, Technische Mechanik IV

Literatur

Oertel, H.; Böhle, M.; Reviol, T.: Grundlagen – Grundgleichungen – Lösungsmethoden– Softwarebeispiele. 6. Auflage, Vieweg + Teubner Verlag Wiesbaden 2011;

Stand: 19.09.2024

Zierep, J.; Bühler, K.: Grundlagen, Statik und Dynamik der Fluide. 7. Auflage, Teubner Verlag Wiesbaden 2008;

Young, D.F.: A brief introduction to fluid mechanics. 5. Auflage, Wiley Verlage Hoboken, NJ 2011; Pijush, K., Cohen, I.M.; Dowling, D.R.: Fluid mechanics, 5. Auflage, Academic Press Waltham, MA 2012. Bei vielen Titeln des Springer-Verlages gibt es im W-Lan der LUH unter www.springer.com eine Gratis Online-Version.

Weitere Angaben

Titel alt: Strömungsmechanik I mit Laborübung als Studienleistung Studienleistung ist AML A Keine

Thermodynami	k II		Sprache	
			Deutsch	
Modultitel englisch			Kompetenzbereich	
Thermodynamics II / ThermoLab			Kompetenzbereich	
			Energietechnische	
			Grundkompezenten	
Angebot im WS 20)24/25		Modultyp	
nur Prüfung			Wahl-Pflicht	
Prüfungsform			Prüfungsbewertung	
Klausur (90 min)			benotet	
Studienleistung			Empfohlenes Fachsemester	
1, SoSe			-	
Studentische Arbei	tsleistung		Frequenz	
Gesamt: 150 Stunde	en; davon Präsenz: 75	Stunden; davon	jährlich	
Selbststudium: 75 S	tunden			
SWS	LP (ECTS)	Dozent/in	Prüfer/in	
2 V + 2 Ü + 1 L	5 LP		Kabelac	
Schwerpunkt / Micro-Degree		Bei Seminar: Se	mesterthema (dt/en)	
keine				
Organisationseinhe	eit	Modulverantwo	rtlicher	
IFI		IFT	IFT	

Webseite

http://www.ift.uni-hannover.de

Qualifikationsziele

Nach erfolgreichem Abschluss dieses Moduls sind die Studierenden in der Lage:

- verschiedene Pfade zur Umwandlung von Primärenergie in Nutzenergie zu beschreiben.
- verschiedene technisch relevante Energiewandler wie Feuerungen, Brennstoffzellen, Gasturbinenanlagen und Dampfkraftwerke quantitativ zu bilanzieren und zu bewerten.
- die Umweltproblematik durch Verbrennung fossiler Brennstoffe zu beschreiben und Lösungen aufzuzeigen.
- die Bewertung der Umwandlungsfähigkeit von Energieformen durch den Exergiebegriff zu erweitern.
- die Bedeutung der Energiewandlung und der dazugehörigen Energietechnik für eine nachhaltige Energiewende zu beschreiben.

Durch das Labor werden Kompetenzen in der praktischen Handhabung von Energiewandlern im Labormaßstab erworben, sowie die Sozialkompetenz durch Gruppenarbeit gefördert.

Inhalt

Dieses Modul umfasst die Lehrveranstaltung Thermodynamik II und das dazugehörige Labor Thermolab. Das Modul rundet die im Modul "Thermodynamik I/Chemie" vermittelten Grundlagen der technischen Thermodynamik ab, indem die Hauptsätze der Thermodynamik auf verschiedene

Energiewandlungsprozesse angewendet werden. Dabei werden insbesondere nachhaltige

Energiewandlungsprozesse wie die Brennstoffzelle hervorgehoben. Es werden folgende Inhalte behandelt:

- Verbrennung und Brennstoffzelle
- Dampfkreisprozess, Stirling-Maschine und Gasturbinenanlage als Wärmekraftmaschine
- Das moderne Kraftwerk / CO2 Sequestrierung CC

- Strömungs- und Arbeitsprozesse
- Exergie und Anergie Wärmepumpe, Kältemaschine, Klimatechnik und Feuchte Luft

Teilnahmevoraussetzungen und -empfehlungen

Thermodynamik I

Literatur

Baehr, H.D. und Kabelac, S.: Thermodynamik, 16. Aufl.; Berlin, Heidelberg: Springer-Verl., 2016 Stephan, P., Schaber, K., Stephan, K., Mayinger, F.: Thermodynamik - Grundlagen und technische Anwendungen (Band 1 & 2), 15. Aufl.; Berlin, Heidelberg: Springer-Verl., 2010

Stand: 19.09.2024

Moran, M. J.; Shapiro, H. M.; Boettner D. D. und Bailey, B. B.: Fundamentals of Engineering

Thermodynamics, 8th ed. Hoboken: Wiley, 2014

Kondepudi, D.: Modern Thermodynamics, 2nd ed.; Hoboken: Wiley, 2014

Weitere Angaben

Titel alt: Thermodynamik II / ThermoLab mit Laborübung (Thermolab) als Studienleistung 2 Labore als Studienleistung

Wärmeübertragung			Sprache	
•	3 3	Deutsch		
Modultitel englisch			Kompetenzbereich	
Heat Transfer			Kompetenzbereich	
			Energietechnische	
			Grundkompezenten	
Angebot im WS 20)24/25		Modultyp	
Vorlesung und Prüfi	ung		Wahl-Pflicht	
Prüfungsform			Prüfungsbewertung	
Klausur (90 min)			benotet	
Studienleistung			Empfohlenes Fachsemester	
1, WiSe			-	
Studentische Arbei	itsleistung		Frequenz	
Gesamt: 150 Stunde	en; davon Präsenz: 60	Stunden; davon	jährlich	
Selbststudium: 90 S	tunden			
SWS	LP (ECTS)	Dozent/in	Prüfer/in	
2 V + 1 Ü + 1 L	5 LP	Kabelac	Kabelac	
Schwerpunkt / Micro-Degree keine		Bei Seminar: Se	mesterthema (dt/en)	
Organisationseinhe	eit	Modulverantwo	rtlicher	
IKW		IKW	IKW	

Webseite

http://www.ikw.uni-hannover.de

Qualifikationsziele

Qualifikationsziele Das Modul vermittelt grundlegende Kenntnisse über die Mechanismen der Wärmeübertragung Nach erfolgreicher Absolvierung des Moduls sind die Studierenden in der Lage,

- •aufbauend auf thermodynamischen Gesetzen die Mechanismen der Wärmeübertragung zu verstehen,
- •die passende Modellvorstellung für ein reales, wärmeübertragungstechnisches Problem zu finden und durch das Treffen geeigneter Annahmen eine Reduktion auf einen hinreichend genauen Lösungsansatz vorzunehmen,
- •Ansätze zur Lösung von Wärmeübertragungsproblemen durch Anwendung geeigneter Korrelationen quantitativ zu lösen und grundlegende wärmetechnische Auslegungen einfacher Wärmeübertrager durchzuführen. Die Kenntnisse versetzen die Studierenden in die Lage, Effizienzsteigerung, Verbesserung der Nachhaltigkeit und Maßnahmen zur Ressourcenschonung zu verstehen und umzusetzen.

Inhalt

Inhalt:

- Stationärer Wärmedurchgang
- Wärmestrahlung
- •Instationäre Wärmeleitung
- •Wärmeübertragung an Rippen
- •Auslegung von Wärmeübertragern
- •Konvektiver Wärmetransport
- •Einführung in das Sieden und Kondensieren

Teilnahmevoraussetzungen und -empfehlungen

Thermodynamik I und II

Literatur

VDI-Wärmeatlas, 10. Aufl. Springer, 2006.

H.D. Baehr / K. Stephan: Wärme- und Stoffübertragung, 7. Aufl. Springer, 2010.

J. Kopitz / W. Polifke: Wärmeübertragung 2. Aufl. Pearson Studium, 2010.

Incropera, F.P.; Dewitt, D.P.; Bergman, T.L., Lavine, A.S.: Principles of heat and mass transfer, 7. Aufl., John

Stand: 19.09.2024

Wiley & Sons Singapore Pte. Ltd., 2013.

Weitere Angaben

Titel alt: Wärmeübertragung I mit Laborübung als Studienleistung

keine

1.4. Kompetenzbereich Gesellschaft, Wirtschaft, Recht

Englischer Titel: Society, economy, law

Information zum: 7 LP, P

Einführung in das deutsche Energie- und			Sprache
Klimarecht		Deutsch	
Modultitel englisch			Kompetenzbereich
Introduction to German and European Climate Law			Kompetenzbereich Gesellschaft,
			Wirtschaft, Recht
Angebot im WS 2024	1/25		Modultyp
Vorlesung und Prüfung	9		Pflicht
Prüfungsform			Prüfungsbewertung
Keine			
Studienleistung			Empfohlenes Fachsemester
1, WiSe			-
Studentische Arbeitsl	eistung		Frequenz
Workload: Gesamt 90	h / Präsenz 28 h / 9	Selbstlernen 62 h	jährlich
SWS	LP (ECTS)	Dozent/in	Prüfer/in
2 V	3 LP	Gent	Gent
Schwerpunkt / Micro-Degree		Bei Seminar: Se	mesterthema (dt/en)
keine			
Organisationseinheit		Modulverantwo	rtlicher
Insitut für Antriebssyte	eme und	Gent	
Leistungselektronik			
14/ 1 1/	·	·	

Webseite

http://www.gesetze-im-internet.de/

Qualifikationsziele

Grundkenntnisse im deutschen Energie- und Klimarecht

Inhalt

- I. Regulierungsrecht EnWG (Strom/Gas), Regulierung von H2-Netzen, H2-Projekte;
- II. Erzeugungs- und Versorgungskonzepte (EEG, KWKG, Mess-/EichR);
- III. Klimarecht (BEHG, KlimaschutzG, Kohleausstieg)

Teilnahmevoraussetzungen und -empfehlungen

keine

Literatur

Andreas Klees, Einführung in das Energiewirtschaftsrecht, 1. Auflage

Koenig/Kühling/Rasbach, Energierecht, 3. Auflage

Bitte folgende Gesetze unter angegebenem Link zur Vorlesung downloaden: EnWG, StromNEV, EEG, KWKG, GWB, StromGVV, GasGVV, NAV, GasNAV

Weitere Angaben

Titel alt: Einführung in das deutsche und europäische Energierecht

Die Studienleistung ist eine Klausur. Bitte beachten Sie: Das Bewertungssystem der Abschlussklausur hat sich geändert. Falsche und fehlerhaft gekennzeichnete Antworten werden mit negativen Punkten belegt, die von den korrekten Punkten abgezogen werden. Die niedrigste zu erreichende Punktzahl für eine Aufgabe wird mit Null angesetzt.

Veranstaltung findet 14-tägig mit je 4 SWS ab der 2. Vorlesungswoche teils als Live- und teils als Online-

Veranstaltung mit Video-Tutorials statt. Bei den Online-Veranstaltungen werde die Teilnehmer gebeten, die Kameras anzuschalten und sich mit vollem Namen einzuloggen.

Stand: 19.09.2024

Ethische Aspekte des Ingenieurberufs			Sprache Deutsch
Modultitel englisch Ethical aspects of the engineering profession			Kompetenzbereich Kompetenzbereich Gesellschaft, Wirtschaft, Recht
Angebot im WS 2024 Vorlesung und Prüfung			Modultyp Pflicht
Prüfungsform Seminarleistung (SE)			Prüfungsbewertung unbenotet
Studienleistung keine			Empfohlenes Fachsemester
Studentische Arbeitsl 30 h	eistung		Frequenz jährlich
SWS	LP (ECTS)	Dozent/in	Prüfer/in
1 V	1 LP	Preißler, Ponick	Preißler
Schwerpunkt / Micro-Degree keine		Bei Seminar: Semo	esterthema (dt/en)
Organisationseinheit Studiendekanat der Fakultät für Elektrotechnik und Informatik		Modulverantwortl Preißler	icher

Webseite

_

Qualifikationsziele

Die Studierenden erwerben Fähigkeiten zur Bearbeitung ethischer und interdisziplinärer Fragestellungen und des Einordnens von Technologien in soziotechnische Zusammenhänge. Sie gewinnen anhand von Texten und Fallstudien aus unterschiedlichen Bereichen ein vertieftes Verständnis für die gesellschaftliche Bedeutung der Ingenieurswissenschaften. Die Studierenden erlernen ferner die Fähigkeit, Arbeitsergebnisse vorzustellen, zu diskutieren und gemeinsam zu bewerten. Neben der Durchsetzungsund Diskussionsfähigkeit fördert die Lehrveranstaltung auch die Lesekompetenzen der Studierenden.

Inhalt

Im Seminar werden grundlegende Ansätze und Methoden einer interdisziplinären, angewandten Ethik behandelt. Dabei werden ethische, soziale und kulturelle Dimensionen der Ingenieurwissenschaften und Fragen der Verantwortung anhand von Texten und Fallstudien diskutiert und bewertet. Voraussetzung ist die Bereitschaft, Texte zu lesen und sich aktiv in Diskussionen einzubringen. Die Studierenden erhalten die Möglichkeit, Themen zu recherchieren, eigene Themenwünsche einzubringen und das Seminar dadurch aktiv mitzugestalten.

Die Seminargruppe trifft sich alle drei Wochen für zwei Stunden. Die Seminararbeit besteht aus der Vorbereitung und Durchführung sowie Moderation des jeweiligen Sitzungstermins.

Teilnahmevoraussetzungen und -empfehlungen

_

Literatur

Wird in der ersten Sitzung bekannt gegeben.

Weitere Angaben

Maximal 10 Teilnehmende. Weitere Informationen in Stud.IP.

irtschaft Sprache Deutsch Kompetenzbereich Kompetenzbereich Gesellschaft Wirtschaft, Recht Modultyp Wahl Prüfungsbewertung	
Kompetenzbereich Gesellschaft Wirtschaft, Recht Modultyp Wahl	
Wirtschaft, Recht Modultyp Wahl	
Modultyp Wahl	
Wahl	
Prüfungsbewertung	
1 5	
benotet	
Empfohlenes Fachsemester	
-	
Frequenz	
jährlich	
zent/in Prüfer/in	
Kranz	
Bei Seminar: Semesterthema (dt/en)	
Modulverantwortlicher	
IEE	

Webseite

http://www.iee.uni-hannover.de/

Qualifikationsziele

Die Studierenden kennen energiewirtschaftliche Grundbegriffe, Energiebedarf, Ressourcen und Reserven, Struktur und Ordnungsrahmen in Deutschland und Europa sowie Wärmekraftwerke. Sie kennen Begriffe und Zusammenhänge der regenerativen Energieerzeugung: Technik, wirtschaftliche Bedeutung und Entwicklungen, Übertragungs- und Verteilnetze, Ökonomie der Energiewirtschaft, Stromhandel und Marktmechanismen sowie die Herausforderungen für eine nachhaltige Energieversorgung der Zukunft.

Inhalt

Energiewirtschaftliche Grundbegriffe, Energiebedarf, Ressourcen und Reserven, Struktur und Ordnungsrahmen in Deutschland und Europa, Wärmekraftwerke, Regenerative Energieerzeugung: Technik, wirtschaftliche Bedeutung und Entwicklungen, Übertragungs- und Verteilnetze, Ökonomie der Energiewirtschaft, Stromhandel und Marktmechanismen, Herausforderungen für eine nachhaltige Energieversorgung der Zukunft

Teilnahmevoraussetzungen und -empfehlungen

keine

Literatur

Weitere Angaben

ab WS 11/12 neuer Titel; vorher "Energiewirtschaft"

Studierende, die "Grundlagen und Rechenmethoden der elektrischen Energiewirtschaft" belegt haben, können "Grundlagen der elektrischen Energiewirtschaft" nicht belegen.

1.5. Kompetenzbereich Allgemeine Energietechnik

Englischer Titel: General Power Engineering

Information zum : 25 LP, WP

Batteriespeiche	ersysteme		Sprache	
•	,		Deutsch	
Modultitel englisc	h	Kompetenzbereich		
Battery storage syst	ems		Kompetenzbereich Allgemeine	
			Energietechnik	
Angebot im WS 20	024/25		Modultyp	
nur Prüfung			Wahl-Pflicht	
Prüfungsform			Prüfungsbewertung	
Klausur (min)			benotet	
Studienleistung			Empfohlenes Fachsemester	
1, SoSe			-	
Studentische Arbe	itsleistung		Frequenz	
Gesamt: 150 Stunde	en; davon Präsenz: 60	Stunden; davon	jährlich	
Selbststudium: 90 S	tunden			
SWS	LP (ECTS)	Dozent/in	Prüfer/in	
2 V + 1 Ü + 1 L	5 LP		Hanke-Rauschenbach	
Schwerpunkt / Micro-Degree keine		Bei Seminar: Se	mesterthema (dt/en)	
Organisationseinheit		Modulverantwo	rtlicher	
Institut für Elektrische Energiesysteme/IfES			Hanke-Rauschenbach	

Webseite

http://www.ifes.uni-hannover.de/ees

Qualifikationsziele

Die Teilnehmerinnen und Teilnehmer der Veranstaltung sind in der Lage Simulationsstudien zur Bewertung von Speicheranwendungen durchzuführen. Ferner sind Sie mit den methodischen Ansätzen zur anwendungsspezifischen Speicherauswahl und Dimensionierung vertraut und können diese entsprechend anwenden. Darüber hinaus verfügen die Teilnehmerinnen und Teilnehmer über einen umfassenden Überblick zu Lithium-Ionen-Akkumulatoren und sind mit deren Betriebsführung, Schutz und allen sicherheitstrelevanten Aspekten vertraut.

Inhalt

Simulation komplexer Lastgänge (Problemformulierung als Zustandsautomat, numerische Behandlung); Methodisches Vorgehen bei der Gestaltung und Auslegung von Speichersystemen (Systeme ohne zuverlässige Infrastruktur, Systeme mit zuverlässiger Infrastruktur, Betrachtung von Dualspeichern); Lithium-Ionen-Akkumulatoren (Aufbau und Funktionsprinzip, Materialien, Sicherheit von Li-Ionen-Zellen); Batteriesystemtechnik (Ladeverfahren, Zustandsbestimmung)

Teilnahmevoraussetzungen und -empfehlungen

keine

Literatur

- M. Sterner, I. Stadler: Energiespeicher Bedarf, Technologien, Integration, Springer-Verlag, Berlin 2014
- R. Korthauer: Handbuch Lithium-Ionen-Batterien, Springer-Verlag, Berlin Heidelberg 2013
- B. Scrosati, K. M. Abraham, W. A. van Schalkwijk, J. Hassoun: Lithium Batteries: Advanced Technologies and Applications, John Wiley & Sons, 2013
- A. Jossen, W. Weydanz: Moderne Akkumulatoren richtig einsetzen, Reichardt Verlag, Untermeitingen 2006

Weitere Angaben

Titel bis SoSe 2022: Energiespeicher II mit Labor als Studienleistung

mit Laborübung als Studienleistung

Diese Veranstaltung umfasst eine Studienleistung in Form eines Laborversuchs für den 1 LP (siehe Bemerkungen) angerechnet wird. Die Terminabstimmung erfolgt während des Semesters.

Stand: 19.09.2024

Brennstoffzellen	und Wasserelektr	rolyse	Sprache Deutsch
Modultitel englisch			Kompetenzbereich
Fuel Cells and Water E	lectrolysis		Kompetenzbereich Allgemeine Energietechnik
Angebot im WS 2024	1/25		Modultyp
nur Prüfung			Wahl-Pflicht
Prüfungsform			Prüfungsbewertung
Klausur (min)			benotet
Studienleistung			Empfohlenes Fachsemester
Keine			-
Studentische Arbeitsl	eistung		Frequenz
·	davon Präsenz: 75 Stur	nden; davon	jährlich
Selbststudium: 75 Stur	T	1	
SWS	LP (ECTS)	Dozent/in	Prüfer/in
3 V + 2 Ü	5 LP		Hanke-Rauschenbach
Schwerpunkt / Micro	Schwerpunkt / Micro-Degree		nesterthema (dt/en)
keine			
Organisationseinheit		Modulverantwortlicher	
Institut für Elektrische IFT	Institut für Elektrische Energiesysteme/IfES,		bach, Kabelac

Webseite

http://www.ifes.uni-hannover.de/ees

Qualifikationsziele

Das Modul vermittelt ein grundlegendes Verständnis der physikalischen Vorgänge in elektrochemischen Energiewandlern, insbesondere der Brennstoffzelle der Wasser-Elektrolyse. Diese beiden Energiewandler spielen eine zentrale Rolle in zukünftigen Energieversorgungsszenarien.

Nach erfolgreichem Abschluss dieses Moduls sind die Studierenden in der Lage:

- das zugrundeliegende physikalische Prinzip der elektrochemischen Energiewandlung aus eigenem Verständnis heraus zu erläutern.
- die wichtigsten Elemente einer elektrochemischen Zelle sowie deren Funktion qualitativ und quantitativ zu beschreiben.
- die notwendigen Hilfssysteme zu benennen und zu erläutern, die Kennlinie einer Brennstoffzelle bzw. eines Elektrolyseurs zu berechnen und zu interpretieren.
- die möglichen Verfahren zur Wasserelektrolyse zu beschreiben.

Inhalt

Modulinhalte:

- Im Rahmen dieses Moduls erstellen die Studierenden ein einfaches Programm zur Modellierung einer Brennstoffzelle
- Einführung und GrundlagenPotentialfeld in der Brennstoffzelle
- Stationäres Betriebsverhalten
- Thermodynamik und Elektrochemie
- Experimentelle Methoden in der Brennstoffzellenforschung
- Brennstoffzellensysteme und deren Anwendung

- Wasserelektrolyse (Grundlagen und Varianten)
- Wasserstoffwirtschaft

Teilnahmevoraussetzungen und -empfehlungen

Thermodynamik, Transportprozesse in der Verfahrenstechnik

Literatur

R. O'Hayre/S. Cha/W. Colella/F. Prinz: Fuel Cell Fundamentals 3. ed. New York: Wiley & Sons, 2016

W. Vielstich et al.: Handbook of Fuel Cells. New York: Wiley & Sons, 2003

A. Bard, L.R. Faulkner: Electrochemical Methods. Fundamentals and Applications 2. ed. New York: Wiley & Sons, 2001

Stand: 19.09.2024

P. Kurzweil: Brennstoffzellentechnik: Grundlagen, Komponenten, Systeme, Anwendungen 2. ed.

Wiesbaden: Springer Vieweg, 2013

Weitere Angaben

Elektrische Antr	iebssysteme		Sprache	
	,		Deutsch	
Modultitel englisch			Kompetenzbereich	
Electrical Drive Systen	ns		Kompetenzbereich Allgemeine	
			Energietechnik	
Angebot im WS 202	4/25		Modultyp	
nur Prüfung			Wahl-Pflicht	
Prüfungsform			Prüfungsbewertung	
mündl. Prüfung (MP)			benotet	
Studienleistung			Empfohlenes Fachsemester	
1, SoSe			-	
Studentische Arbeits	leistung		Frequenz	
Workload: Gesamt 15	0 h / Präsenz 56 h / Se	lbstlernen 94 h	jährlich	
SWS	LP (ECTS)	Dozent/in	Prüfer/in	
2 V + 1 Ü + 1 L	5 LP		Ponick	
Schwerpunkt / Micro	o-Degree	Bei Seminar: Ser	Bei Seminar: Semesterthema (dt/en)	
keine	keine			
Organisationseinheit		Modulverantwor	tlicher	
Institut für Antriebssysteme und		Ponick, IAL		
Leistungselektronik , l	nstitut für			
Antriebssysteme und	Leistungselektronik			

Webseite

http://www.ial.uni-hannover.de/vorlesungen.html

Qualifikationsziele

Das Modul vertieft die bereits bekannten grundlegenden Kenntnisse über Synchron und Induktionsmaschinen um spezifische Einsichten in deren Betriebsverhalten im gesamten Antriebssystem, d. h. um die Wechselwirkungen mit dem speisenden Netz bzw. Frequenzumrichter einerseits und der angetriebenen Arbeitsmaschine andererseits. Die Studierenden lernen, – praktisch relevante Wechselwirkungen wie Schwingungsanregungen beim Anlauf, beim Betrieb am Frequenzumrichter oder bei transienten Vorgängen selbstständig zu analysieren,– die spezifischen Eigenschaften der möglichen Kombinationen aus Frequenzumrichter und elektrischer Maschine sowie wichtige nicht-elektrische Effekte zu Kühlung, Lagerung oder Geräuschentwicklung zu beurteilen, – den Anlauf und elektrische Bremsverfahren von direkt netzbetriebenen Drehfeldmaschinen anforderungsgerecht zu konzipieren.

Inhalt

Betriebsverhalten von Induktionsmaschinen unter Berücksichtigung von R1

Besonderheiten der Antriebsarten beim Einschalten und beim Hochlauf: Betrachtung der Stoßgrößen, der Erwärmung und der Drehmoment-Drehzahl-Kennlinie einschl. Sattelmomentbildung; Anlasshilfen

Elektrische Bremsverfahren bei den unterschiedlichen Maschinenarten: Gegenstrombremsen, Gleichstrombremsen, generatorisches Nutzbremsen

Möglichkeiten der Drehzahlstellung bei Induktions- und Synchronmotoren; Leistungselektronische Grundschaltungen, Vergleich bzgl. zusätzlicher Kosten und Verluste, Erzeugung von Pendelmomenten

Erwärmung und Kühlung elektrischer Maschinen: Kühlkonzepte, Ermittlung der Wicklungserwärmung, Betriebsarten, Anforderungen an die Energieeffizienz, Transiente Wicklungserwärmung

Stand: 19.09.2024

Einführung in Berechnungsverfahren der symmetrischen Komponenten für Augenblickswerte und der Park-Transformation (Spannungsgleichungen, Augenblickswert des elektromagnetischen Drehmomentes) zur Simulation transienter Vorgänge. Nachbildung des mechanischen Wellenstranges (mehrgliedrige Schwinger, Betrachtungen zur mechanischen Dämpfung), Berücksichtigung der transienten Stromverdrängung

Ausgleichsvorgänge in Induktionsmaschinen (Einschalten, symmetrische und unsymmeterische Klemmenkurzschlüsse, Spannungs-Wiederkehr, Netzumschaltungen)

Ausgleichsvorgänge in Synchronmaschinen mit Vollpol- oder Schenkelpol-Läufern (Einschalten von direkt am Netz liegenden Motoren, Einfluss der Dämpferwicklung und von Läufer-Anisotropien, symmetrische und unsymmetrische Klemmenkurzschlüsse aus dem Leerlauf oder einem Lastzustand, Fehlsynchronisation). Reaktanzen und Zeitkonstanten von Synchronmaschinen

Konstruktive Einzelheiten: Bauformen, Schutzarten, explosionsgeschützte Maschinen, gegenseitige Beeinflussung von Kupplungs- und Lagerungsarten, Lagerspannungen und Lagerströme

Akustik elektrischer Antriebe: Betrachtungen zur Geräuschentwicklung und ihrer Beurteilung.

Teilnahmevoraussetzungen und -empfehlungen

Grundlagen der elektromagnetischen Energiewandlung (notwendig)

Literatur

Seinsch: Grundlagen elektrischer Maschinen und Antriebe;

Seinsch: Ausgleichsvorgänge bei elektrischen Antrieben;

Skriptum zur Vorlesung

Weitere Angaben

mit Laborübung als Studienleistung

Für PO2017/5LP ist über den 1L-Laboranteil eine Studienleistung in Form von zwei Laborversuchen nachzuweisen.

Elektrische Energiespeichersysteme			Sprache Deutsch
Modultitel englisch Electrical energy storage systems			Kompetenzbereich Kompetenzbereich Allgemeine Energietechnik
Angebot im WS 202- Vorlesung und Prüfun			Modultyp Wahl-Pflicht
Prüfungsform Klausur (90 min)			Prüfungsbewertung benotet
Studienleistung 1, WiSe			Empfohlenes Fachsemester -
Studentische Arbeitsleistung Gesamt: 150 Stunden; davon Präsenz: 75 Stun Selbststudium: 75 Stunden		nden; davon	Frequenz jährlich
SWS	LP (ECTS)	Dozent/in	Prüfer/in
2 V + 2 Ü + 1 L	5 LP	Hanke- Rauschenbach	Hanke-Rauschenbach
Schwerpunkt / Micro-Degree keine		Bei Seminar: Seme	sterthema (dt/en)
Organisationseinheit Institut für Elektrische Energiesysteme, FG Elektrische Energiespeichersysteme		Modulverantwortl i Bensmann	cher

Webseite

http://www.ifes.uni-hannover.de/ees.html

Qualifikationsziele

Die Teilnehmerinnen und Teilnehmer der Veranstaltung verfügen über einen profunden Überblick über verschiedene Speichertechnologien. Sie kennen alle nötigen Kenngrößen zum Vergleich der Technologien untereinander. Für jede Technologie sind die Teilnehmerinnen und Teilnehmer mit dem Aufbau, dem Funktionsprinzip, technischen Realisierungen und der groben Kostenstruktur vertraut. Ferner sind sie in der Lage das Betriebsverhalten des jeweiligen Speichers mit Hilfe eines Minimalmodells zu beschreiben. Darüber hinaus sind die Teilnehmerinnen und Teilnehmer mit den typischen Anwendungsfeldern für Speicher vertraut und kennen jeweils die Anforderungen und die typisch eingesetzten Speichertechnologien.

Inhalt

Einleitung und Übersicht (Klassifikation, Kenngrößen);

Speicherung in Form von elektrischer und magnetischer Feldenergie (Superkondensatoren, Supraleitende Spulen);

Speicherung in Form von mechanischer Energie (Pumpspeicher, Druckluftspeicher, Schwungradspeicher);

Speicherung in Form von chemischer Energie (Akkumulatoren, Redoxflow-Speicher, Wasserelektrolyse und darauf aufbauende Speicher-/ Nutzungspfade);

Speicherung in Form von thermischer Energie;

Einsatzfelder, Anforderungen und eingesetzte Speichertechnologien (tragbare Kleingeräte, Traktion, stationäre Energieversorgung)

Stand: 19.09.2024

Teilnahmevoraussetzungen und -empfehlungen

keine besonderen Vorkenntnisse nötig

Literatur

M. Sterner, I. Stadler: Energiespeicher – Bedarf, Technologien, Integration, Springer-Verlag, Berlin 2014

A. Hauer, J. Quinnell, E. Lävemann: Energy Storage Technologies - Characteristics, Comparison, and Synergies, in: Transition to Renewable Energy Systems, ed. D. Stolten, Wiley-VCH, Weinheim 2013

VDI-Bericht Band 2058: Elektrische Energiespeicher. Schlüsseltechnologie für energieeffiziente Anwendungen, VDI-Verlag, Düsseldorf, 2009

Weitere Angaben

Titel bis SoSe 2022: Energiespeicher I mit Laborübung als Studienleistung mit Laborübung als Studienleistung

Diese Veranstaltung umfasst eine Studienleistung in Form eines Laborversuchs für den 1 LP (siehe Bemerkungen) angerechnet wird. Die Terminabstimmung erfolgt während des Semesters.

Elektrische Energieversorgung I			Sprache	
			Deutsch	
Modultitel englisch			Kompetenzbereich	
Electric Power Systems	; l		Kompetenzbereich Allgemeine	
			Energietechnik	
Angebot im WS 2024	1/25		Modultyp	
Vorlesung und Prüfung)		Wahl-Pflicht	
Prüfungsform			Prüfungsbewertung	
Klausur (100 min)			benotet	
Studienleistung			Empfohlenes Fachsemester	
1, WiSe			-	
Studentische Arbeitsleistung			Frequenz	
Gesamt: 150 Stunden; davon Präsenz: 60 Stunden; davon			jährlich	
Selbststudium: 90 Stur	nden			
SWS	LP (ECTS)	Dozent/in	Prüfer/in	
2 V + 1 Ü + 1 L	5 LP	Hofmann	Hofmann	
Schwerpunkt / Micro-Degree keine		Bei Seminar: Se	Bei Seminar: Semesterthema (dt/en)	
Organisationseinheit		Modulverantwo	Modulverantwortlicher	
Institut für Elektrische Energiesysteme/IfES		S IEE	IEE	

Webseite

http://www.iee.uni-hannover.de/

Qualifikationsziele

Die Studierenden erlangen eine Vertiefung ihres Wissens in Bezug auf den Aufbau und die Wirkungsweise von elektrischen Energiesystemen und deren Betriebsmitteln. Nach erfolgreichem Abschluss des Moduls können die Studierenden:

- symmetrische und unsymmetrische Drehstromsysteme und deren Betriebsmittel (Generatoren, Motoren, Ersatznetze, Leitungen, Transformatoren, Drosselspulen, Kondensatoren) mathematisch beschreiben
- die Methode der Symmetrischen Komponenten zur Überführung symmetrischer Drehstromsysteme in drei Einphasensysteme auf elektrische Energieversorgungssysteme anwenden
- die Ersatzschaltungen der Betriebsmittel in Symmetrischen Komponenten beschreiben, parametrieren und anwenden
- das Verfahren zur Berechnung von symmetrischen und unsymmetrischen Quer- und Längsfehlern anwenden

Inhalt

Mathematische Beschreibung des symmetrischen und unsymmetrischen Drehstromsystems. Methode der Symmetrischen Komponenten zur Überführung symmetrischer Drehstromsysteme in drei Einphasensysteme. Kennenlernen der Ersatzschaltungen der Betriebsmittel in Symmetrischen Komponenten. Maßnahmen zur Kompensation und zur Kurzschlussstrombegrenzung. Berechnung von symmetrischen und unsymmetrischen Quer- und Längsfehlern.

Vorlesungsinhalte:

- 1. Einführung, Zeigerdarstellung, Symmetrisches Drehstromsystem, Strangersatzschaltung
- 2. Unsymmetrisches Drehstromsystem, Symmetrische Komponenten (SK)
- 3. Generatoren

- 4. Motoren und Ersatznetze
- 5. Transformatoren
- 6. Leitungen
- 7. Drosselspulen, Kondensatoren, Kompensation
- 8. Kurzschlussverhältnisse
- 9. Symmetrische und unsymmetrische Querfehler
- 10. Symmetrische und unsymmetrische Längsfehler

Teilnahmevoraussetzungen und -empfehlungen

keine

Literatur

Hofmann, Lutz: Elektrische Energieversorgung Band 1: Grundlagen, Systemaufbau und Methoden. Berlin, De Gruyter Oldenbourg, 2019.

Stand: 19.09.2024

Hofmann, Lutz: Elektrische Energieversorgung Band 2: Betriebsmittel und ihre quasistationäre Modellierung. Berlin, De Gruyter Oldenbourg, 2019.

Hofmann, Lutz: Elektrische Energieversorgung Band 3: Systemverhalten und Berechnung von Drehstromsystemen. Berlin, De Gruyter Oldenbourg, 2019.

Weitere Angaben

mit Laborübung als Studienleistung

Die Studienleistung besteht aus Kleingruppenübungen, die den Lehrinhalt durch praxisrelevante Beispielaufgaben weiter vertiefen. Die Studienleistung gilt nach dem Bestehen einer Prüfung im ILIAS-System, die im Rahmen der Kleingruppenübung stattfindet, als bestanden.

Elektrische Ene	ergieversorgung	II	Sprache	
	5 5 5		Deutsch	
Modultitel englisch			Kompetenzbereich	
Electric Power Syste	ms II		Kompetenzbereich Allgemeine	
			Energietechnik	
Angebot im WS 20)24/25		Modultyp	
nur Prüfung			Wahl-Pflicht	
Prüfungsform			Prüfungsbewertung	
mündl. Prüfung (MP)			benotet	
Studienleistung			Empfohlenes Fachsemester	
1, SoSe			-	
Studentische Arbeitsleistung			Frequenz	
Gesamt: 150 Stunden; davon Präsenz: 60 Stunden; davon			jährlich	
Selbststudium: 90 S	tunden			
SWS	LP (ECTS)	Dozent/in	Prüfer/in	
2 V + 1 Ü + 1 L	5 LP		Hofmann	
Schwerpunkt / Micro-Degree keine		Bei Seminar: Se	Bei Seminar: Semesterthema (dt/en)	
Organisationseinheit		Modulverantwo	Modulverantwortlicher	
-	he Energiesysteme/lfE	S IEE	IEE	

Webseite

http://www.iee.uni-hannover.de/

Qualifikationsziele

Die Studierenden erlangen eine Vertiefung ihres Wissens in Bezug auf das Zusammenwirken der Betriebsmittel in elektrischen Energiesystemen. Nach erfolgreichem Abschluss des Moduls können die Studierenden:

- die verschiedenen Arten der Sternpunktbehandlung beschreiben und charakteristische Erd(kurz)schlussgrößen berechnen und geeignete Näherungsverfahren anwenden
- die thermischen und mechanischen Beanspruchung bei Kurzschlüssen bestimmen und die Betriebsmittel entsprechend auslegen
- Kenntnisse zur Aufrechterhaltung des stabilen Betriebes vorweisen und Verfahren zur Analyse der statischen und transienten Stabilität für das Einmaschinen-Problem anwenden
- die Wirkung der Primär- und Sekundärregelung und der Netzregelung in Verbundbetrieb beschreiben und mathematisch beschreiben
- die prinzipiellen Wirkungsweisen von verschiedenen Netzschutzeinrichtungen, die Möglichkeiten der Leistungsflusssteuerung und die Entstehung von zeitweiligen Überspannungen erklären

Inhalt

Kennenlernen der verschiedenen Arten der Sternpunktbehandlung. Berechnung der thermischen und mechanischen Kurzschlussbeanspruchungen. Analyse der statischen und transienten Stabilität. Kennenlernen der Primär- und Sekundärregelung und der Netzregelung in Verbundbetrieb, der prinzipiellen Wirkungsweisen von Netzschutzeinrichtungen, der Möglichkeiten der Leistungsflusssteuerung. Entstehung von zeitweiligen Überspannungen.

Vorlesungsinhalte:

1. Sternpunktbehandlung

- 2. Thermische Kurzschlussfestigkeit
- 3. Mechanische Kurzschlussfestigkeit
- 4. Statische Stabilität
- 5. Transiente Stabilität
- 6. Netzregelung: Primärregelung
- 7. Netzregelung: Sekundärregelung
- 8. Netzregelung im Verbundbetrieb
- 9. Netzschutz
- 10. Leistungsflusssteuerung
- 11. Zeitweilige Überspannungen

Teilnahmevoraussetzungen und -empfehlungen

keine

Literatur

Hofmann, Lutz: Elektrische Energieversorgung Band 1: Grundlagen, Systemaufbau und Methoden. Berlin, De Gruyter Oldenbourg, 2019.

Stand: 19.09.2024

Hofmann, Lutz: Elektrische Energieversorgung Band 2: Betriebsmittel und ihre quasistationäre Modellierung. Berlin, De Gruyter Oldenbourg, 2019.

Hofmann, Lutz: Elektrische Energieversorgung Band 3: Systemverhalten und Berechnung von Drehstromsystemen. Berlin, De Gruyter Oldenbourg, 2019.

Weitere Angaben

mit Laborübung als Studienleistung

Die Studienleistung besteht aus Kleingruppenübungen, die den Lehrinhalt durch praxisrelevante Beispielaufgaben weiter vertiefen.

Elektrothermisch	ne Verfahren		Sprache Deutsch	
Modultitel englisch Electrothermal Processes			Kompetenzbereich Kompetenzbereich Allgemeine Energietechnik	
Angebot im WS 202 Vorlesung und Prüfun			Modultyp Wahl-Pflicht	
Prüfungsform mündl. Prüfung (MP)			Prüfungsbewertung benotet	
Studienleistung \			Empfohlenes Fachsemester -	
Studentische Arbeits Gesamt: 150 Stunden Selbststudium: 90 Stu	; davon Präsenz: 60 S	Stunden; davon	Frequenz jährlich	
SWS	LP (ECTS)	Dozent/in	Prüfer/in	
2 V + 1 Ü + 1 L	5 LP	Baake	Baake	
Schwerpunkt / Micro-Degree keine		Bei Seminar: Se	Bei Seminar: Semesterthema (dt/en)	
Organisationseinheit Institut für Elektrothermische Prozesstechnik			Modulverantwortlicher ETP	

Webseite

http://www.etp.uni-hannover.de

Qualifikationsziele

Die Studierenden sollen die unterschiedlichen Verfahren der elektrothermischen Prozesstechnik verstehen und qualitative und quantitave Lösungsmöglichkeiten für Probleme der Praxis erarbeiten können.

Inhalt

Energiewirtschaftliche Bedeutung, Eigenschaften und Einsatzbereiche, thermische und elektrotechnische Grundlagen des Ofenbaus, Umwandlung elektrischer in thermische Energie mit Berechnungsbeispielen für induktive, dielektrische und konduktive Erwärmung, Widerstands- und Lichtbogenerwärmung

Teilnahmevoraussetzungen und -empfehlungen

keine

Literatur

Weitere Angaben

mit Laborübung als Studienleistung

Für PO2017/5LP ist über den 1L-Laboranteil eine Studienleistung nachzuweisen.

Diese Lehrveranstaltung trägt zu den folgenden Zielen für nachhaltige Entwicklung (Sustainable

Development Goals, SDGs) bei:

SDG 7: Bezahlbare und saubere Energie

SDG 9: Industrie, Innovation und Infrastruktur

SDG 13: Maßnahmen zum Klimaschutz

Gemisch- und Prozessthermodynamik			Sprache	
		•	Deutsch	
Modultitel englisch			Kompetenzbereich	
Thermodynamics of ph	nase equilibria and	Kompetenzbereich Allgemeine		
			Energietechnik	
Angebot im WS 2024	1/25		Modultyp	
Vorlesung und Prüfung			Wahl-Pflicht	
Prüfungsform			Prüfungsbewertung	
mündl. Prüfung (MP)			benotet	
Studienleistung			Empfohlenes Fachsemester	
_			-	
Studentische Arbeitsleistung			Frequenz	
150 h			jährlich	
SWS	LP (ECTS)	Dozent/in	Prüfer/in	
2 V + 2 Ü + 1 L	5 LP	Kabelac	Kabelac	
Schwerpunkt / Micro-Degree		Bei Seminar: Se	Bei Seminar: Semesterthema (dt/en)	
keine				
Organisationseinheit		Modulverantwo	Modulverantwortlicher	
		N.N.	N.N.	

Webseite

http://www.ift.uni-hannover.de

Qualifikationsziele

Diese Veranstaltung führt in die Grundlagen der Phasen- und der Reaktionsgleichgewichte von fluiden Gemischen ein, die grundlegend für viele Prozesse der Energie- und Verfahrenstechnik sind. Nach erfolgreichem Absolvieren des Moduls sind die Studierenden in der Lage:

- die Basis für Gemisch-thermodynamische Berechnungen in eigenen Worten zu erläutern.
- einige wichtige Berechnungsmodelle zu beschreiben.
- anhand von Phasendiagramme für Komponentengemische Trennverfahren in erster Näherung auszulegen.
- das passendste Trennverfahren für eine Trennaufgabe auszuwählen.

Inhalt

Modulinhalte:

- Phasendiagramme
- Kanonische Zustandsgleichungen
- Chemisches Potenzial, Fugazitäts-und Aktivitätskoeffizient
- Destillation und Rektifikation
- Absorption, Gaswäsche und Adsorption
- Extraktion und Membran-Trennverfahren

Teilnahmevoraussetzungen und -empfehlungen

Thermodynamik I und II

Literatur

Baehr, H.D., Kabelac, S.: Thermodynamik: Grundlagen und Anwendungen; 16. Aufl. Berlin: Springer 2016. Stephan, P., Schaber, K., Stephan K., Mayinger, F.: Thermodynamik-Grundlagen und technische Anwendungen; 15. Aufl. Berlin: Springer 2013.

Sattler, K.: Thermische Trennverfahren: Grundlagen, Auslegung, Apparate; Weinheim: Wiley-VCH 2001. Gmehling, J., Kolbe, B., Kleiber, M., Rarey, J.: Chemical Thermodynamics for Process Simulation; Weinheim: Wiley-VCH 2012.

Stand: 19.09.2024

Weitere Angaben

Ehemaliger Titel (bis SS 2017): Thermodynamik der Gemische mit Laborübung als Studienleistung mit Laborübung als Studienleistung

Grundlagen der Turbomaschinen			Sprache Deutsch	
Modultitel englisch Aerothermodynamics of Turbomachinery			Kompetenzbereich Kompetenzbereich Allgemeine Energietechnik	
Angebot im WS 2024/25 Vorlesung und Prüfung			Modultyp Wahl-Pflicht	
Prüfungsform Klausur (min)			Prüfungsbewertung benotet	
Studienleistung			Empfohlenes Fachsemester	
Studentische Arbeitsleistung Gesamt: 150 Stunden; davon Präsenz: 60 Stunden; davon Selbststudium: 90 Stunden			Frequenz jährlich	
SWS	LP (ECTS)	Dozent/in	Prüfer/in	
2 V + 1 Ü + 1 P	5 LP	Seume	Seume	
Schwerpunkt / Micro-Degree keine		Bei Seminar: Sem	Bei Seminar: Semesterthema (dt/en)	
Organisationseinheit Institut für Turbomaschinen und Fluid- Dynamik		Modulverantword Seume	tlicher	

Webseite

http://www.tfd.uni-hannover.de

Qualifikationsziele

Nach erfolgreicher Absolvierung des Moduls sind die Studierenden in der Lage: – die Grundlegenden aerodynamischen und thermodynamischen Vorgänge in Strömungsmaschinen zu beschreiben – eine grundlegende Auslegung von Strömungsmaschinen im Hinblick auf die gestellten Anforderungen durchzuführen – Grenzen und Herausforderungen der Auslegung im Hinblick auf nachhaltige Technologien zu beschreiben

Inhalt

Die Vorlesung vermittelt thermodynamische und strömungsmechanische Grundlagen von Strömungsmaschinen und wendet diese auf Maschinen axialer- und radialer Bauweise und Diffusoren an. In der Vorlesung wird ein Überblick über verschiedene Anwendungen und Bauformen thermischer Strömungsmaschinen wie Flugtriebwerke, Gas- und Dampfturbinen für Kraftwerke, Turbolader und Prozessverdichter gegeben. Zu den behandelten thermodynamischen Grundlagen zählen die Energieumwandlung in der elementaren Strömungsmaschinenstufe, Kreisprozesse und Wirkungsgrade. Behandelte Grundlagen der Strömungsmaschinen sind u.a. die Auslegung des Schaufelgitters, reale Strömung im Gitter, Aufbau ganzer Stufen aus Gittern.

Teilnahmevoraussetzungen und -empfehlungen

Zwingend: Thermodynamik und Strömungsmechanik I; Empfohlen: Strömungsmechanik II

Literatur

Wilson, David Gordon; Korakianitis, Theodosios: The Design of High-efficiency Turbomachinery and Gas Turbines. London: Prentice Hall, 1998.

Traupel, Walter: Thermische Turbomaschinen: Thermodynamisch-strömungstechnische Berechnung. Berlin Heidelberg New York: Springer-Verlag, 2012.

Stand: 19.09.2024

Weitere Angaben

Titel alt: Aerothermodynamik der Strömungsmaschinen mit Tutorium als Studienleistung

Das Modul besteht aus Vorlesung, Übung und dem Tutorium "Auslegung, Simulation und Erprobung eines ebenen Schaufelgitters". Die schriftliche Prüfung ist unabhängig vom Tutorium, die Teilnahme am Tutorium ist jedoch zum Abschluss des Moduls mit 5 ETCS erforderlich.

Hochspannung	stechnik I		Sprache	
, ,			Deutsch	
Modultitel englisch			Kompetenzbereich	
High Voltage Technic	que l		Kompetenzbereich Allgemeine	
			Energietechnik	
Angebot im WS 2024/25			Modultyp	
nur Prüfung			Wahl-Pflicht	
Prüfungsform			Prüfungsbewertung	
Klausur (120 min)			benotet	
Studienleistung			Empfohlenes Fachsemester	
			-	
Studentische Arbeitsleistung			Frequenz	
Workload: Gesamt 1	50 h / Präsenz 56 h / 9	Selbstlernen 94 h	jährlich	
SWS	LP (ECTS)	Dozent/in	Prüfer/in	
2 V + 1 Ü + 1 L	5 LP		Werle	
Schwerpunkt / Micro-Degree		Bei Seminar: Ser	Bei Seminar: Semesterthema (dt/en)	
keine				
Organisationseinheit		Modulverantwor	Modulverantwortlicher	
Institut für Elektrische Energiesysteme		Werle	Werle	
		•		

Webseite

http://www.si.uni-hannover.de/

Qualifikationsziele

Die Studierenden erlangen Grundkenntnisse der Hochspannungserzeugung und -messung sowie zu den Themen elektrostatisches Feld und Durchschlag in Isolierstoffen.

Inhalt

Einführung in die Hochspannungstechnik

Erzeugung hoher Wechselspannungen

Erzeugung hoher Gleichspannungen

Erzeugung hoher Stoßspannungen

Messung hoher Wechselspannungen

Messung hoher Gleichspannungen

Messung hoher Stoßspannungen

Grundlagen des elektrostatischen Feldes

Elektrische Felder in Isolierstoffen

Durchschlagmechanismen

Durchschlag in Gasen

Durchschlag in flüssigen und festen Isolierstoffen.

Teilnahmevoraussetzungen und -empfehlungen

Grundlagen Elektrotechnik

Grundlagen Physik.

Literatur

M. Beyer, W. Boeck, K. Möller, W. Zaengl: Hochspannungstechnikl; Springer Verlag

G. Hilgarth: Hochspannungstechnik; Teubner Verlag

D. Kind, K. Feser: Hochspannungsversuchstechnik; Vieweg Verlag

H. Ryan: High Voltage Engineering and testing; IEE Power and Energy series 32.

Weitere Angaben

ab SoSe 2021 jährlich im SoSe angeboten

mit Laborübung als Studienleistung

Für PO2017/5LP ist über den 1L-Laboranteil eine Studienleistung nachzuweisen.

Hochspannungsvorführung in der Hochspannungshalle.

Hochspannungst	echnik II		Sprache Deutsch	
Modultitel englisch			Kompetenzbereich	
High Voltage Technique	E 11		Kompetenzbereich Allgemeine Energietechnik	
Angebot im WS 2024	l /25		Modultyp	
Vorlesung und Prüfung)		Wahl-Pflicht	
Prüfungsform			Prüfungsbewertung	
mündl. Prüfung (MP)			benotet	
Studienleistung			Empfohlenes Fachsemester	
1, WiSe			-	
Studentische Arbeitsleistung			Frequenz	
Gesamt: 150 Stunden; davon Präsenz: 60 Stunden; davon			jährlich	
Selbststudium: 90 Stur	nden			
SWS	LP (ECTS)	Dozent/in	Prüfer/in	
2 V + 1 Ü + 1 L	5 LP	Werle	Werle	
Schwerpunkt / Micro-Degree keine		Bei Seminar: Sei	Bei Seminar: Semesterthema (dt/en)	
Organisationseinheit		Modulverantwo	Modulverantwortlicher	
Institut für Elektrische Energiesysteme/IfES		IEH	IEH	

Webseite

http://www.si.uni-hannover.de

Qualifikationsziele

Die Studierende erlangen Wissen über Leitungs- und Durchschlagmechanismen in Flüssigkeiten und festen Isolierstoffen, über Teilentladungsverhalten und Teilentladungsmesstechnik sowie über elektrische Beanspruchungen in kombinierten Isolierssystemen. Die Studierenden beherrschen die Auslegung von Isolierystemen sowie die Beurteilung der Qualität von Isoliersystemen in Hochspannungsgeräten.

Inhalt

Beschreibung der Leitungs- und Durchschlagmechanismen in flüssigen und festen Isolierstoffen bei Gleich- und Wechselspannung;

Beschreibung des Teilentladungsverhaltens von Isolierstoffen;

Beschreibung der Eigenschaften von flüssigen und festen Isolierstoffen;

Teilnahmevoraussetzungen und -empfehlungen

Hochspannungstechnik I

Literatur

M. Beyer, W. Boeck, K. Möller, W. Zaengl: Hochspannungstechnik, Springer Verlag Berlin, ISBN 3-540-16014-0;

M. Kahle: Elektrische Isoliertechnik, Springer Verlag Berlin, ISBN 3-540-19369-3;

A. Küchler: Hochspannungstechnik, Springer Verlag Berlin, ISBN 3-540-21411-9;

Weitere Angaben

ab WS 21/22 Frequenzänderung auf jährlich im WS

mit Laborübung als Studienleistung

Industrielle Elekt	trowärme		Sprache Deutsch	
Modultitel englisch Industrial Applications of Electroheat			Kompetenzbereich Kompetenzbereich Allgemeine Energietechnik	
Angebot im WS 2024	1/25	Modultyp Wahl-Pflicht		
Prüfungsform mündl. Prüfung (MP)			Prüfungsbewertung benotet	
Studienleistung 1, SoSe			Empfohlenes Fachsemester -	
Studentische Arbeits Gesamt: 150 Stunden; Selbststudium: 90 Stu	davon Präsenz: 60 S	tunden; davon	Frequenz jährlich	
SWS	LP (ECTS)	Dozent/in	Prüfer/in	
2 V + 1 Ü + 1 L	5 LP	Baake		
Schwerpunkt / Micro-Degree keine		Bei Seminar: Se	mesterthema (dt/en)	
Organisationseinheit Institut für Elektrothermische Prozesstechnik			Modulverantwortlicher ETP	

Webseite

http://www.etp.uni-hannover.de

Qualifikationsziele

Die Studierenden sollen die praxisnahe Anwendung von elektrothermischen Verfahren verstehen und gezielt Lösungen für neue Verfahren zur Anwendung von elektrothermischen Prozessen entwickeln können.

Inhalt

Elektrowärmeverfahren in der industriellen Anwendung, Widerstandserwärmung, induktive Erwärmung, Lichtbogenerwärmung und Sonderverfahren der elektrischen Erwärmung, Berechnungsmethoden

Teilnahmevoraussetzungen und -empfehlungen

keine

Literatur

Weitere Angaben

mit Laborübung als Studienleistung

Für PO2017/5LP ist über den 1L-Laboranteil eine Studienleistung nachzuweisen.

Diese Lehrveranstaltung trägt zu den folgenden Zielen für nachhaltige Entwicklung (Sustainable Development Goals, SDGs) bei:

SDG 7: Bezahlbare und saubere Energie

SDG 9: Industrie, Innovation und Infrastruktur

SDG 13: Maßnahmen zum Klimaschutz

Leistungselektro	nik I	Sprache Deutsch	
Modultitel englisch		Kompetenzbereich	
Power Electronics I		Kompetenzbereich Allgemeine Energietechnik	
Angebot im WS 202	4/25		Modultyp
Vorlesung und Prüfun	g		Wahl-Pflicht
Prüfungsform Klausur (90 min)			Prüfungsbewertung benotet
Studienleistung 1, WiSe			Empfohlenes Fachsemester
Studentische Arbeits	leistung		Frequenz
Gesamt: 150 Stunden Selbststudium: 90 Stu		Stunden; davon	jährlich
SWS	LP (ECTS)	Dozent/in	Prüfer/in
2 V + 1 Ü + 1 L	5 LP	Mertens	Mertens
Schwerpunkt / Micro-Degree keine		Bei Seminar: Se	mesterthema (dt/en)
Organisationseinheit		Modulverantwo	rtlicher
Institut für Antriebssysteme und		Mertens, IAL	
Leistungselektronik, FG Leistungselektronik ,		ζ,	
Institut für Antriebssy	steme und		
Leistungselektronik			

Webseite

http://www.ial.uni-hannover.de/

Qualifikationsziele

Die Studierenden erwerben in diesem Modul grundlegende Kenntnisse der Funktionsprinzipien, Bauelemente und Schaltungen der Leistungselektronik.

Nach erfolgreichem Abschluss der LV können die Studierenden

- Aufbau und Eigenschaften von Leistungshalbleitern darlegen
- Aktive und passive Bauelemente für die jeweilige Anwendung passend auswählen und dimensionieren
- netzgeführte Stromrichter und ihr Betriebsverhalten sowie ihre Netzrückwirkungen charakterisieren und berechnen
- Einfache selbstgeführte Stromrichter (Gleichstromsteller) konfigurieren und berechnen
- Dreiphasige Wechselrichter erläutern und für den jeweiligen Einsatzfall berechnen
- Einfache Systeme aus mehreren Stromrichtern konfigurieren

Inhalt

Leistungselektronik (LE) zur Energieumformung mit hohem Wirkungsgrad, Anwendungsfelder der LE, Bauelemente der LE, Netzgeführte Gleichrichter, Netzrückwirkungen, Gleichstromsteller, Wechselrichter mit eingeprägter Spannung, zusammengesetzte Stromrichter und Umrichter

Teilnahmevoraussetzungen und -empfehlungen

Grundlagen der Elektrotechnik (notwendig), Grundlagen der Halbleitertechnik (empfohlen)

Literatur

K. Heumann: Grundlagen der Leistungselektronik

Vorlesungsskript

Weitere Angaben

mit Laborübung als Studienleistung

Für PO2017/5LP ist über den 1L-Laboranteil eine Studienleistung nachzuweisen.

Leistungselektro	nik II	Sprache Deutsch	
Modultitel englisch Power Electronics II		Kompetenzbereich Kompetenzbereich Allgemeine Energietechnik	
Angebot im WS 2024 nur Prüfung	4/25	Modultyp Wahl-Pflicht	
Prüfungsform Klausur (90 min)			Prüfungsbewertung benotet
Studienleistung 1, SoSe			Empfohlenes Fachsemester -
Studentische Arbeits Gesamt: 150 Stunden; Selbststudium: 90 Stu	davon Präsenz: 60	Stunden; davon	Frequenz jährlich
SWS	LP (ECTS)	Dozent/in	Prüfer/in
2 V + 1 Ü + 1 L	5 LP		Mertens
Schwerpunkt / Micro-Degree keine		Bei Seminar: Sei	mesterthema (dt/en)
Organisationseinheit Institut für Antriebssysteme und Leistungselektronik		Modulverantwo IAL	rtlicher

Webseite

http://www.ial.uni-hannover.de/vorlesungen.shtml#LE2

Qualifikationsziele

Aufbauend auf den Grundlagen aus Leistungselektronik I,werden in diesem Modul vertiefte und anwendungsorientierte Kenntnisse über leistungselektronische Schaltungen und Steuerverfahren vermittelt.

Nach erfolgreichem Abschluss des Moduls können die Studierenden

- Raumzeiger-Modulationsverfahren für dreiphasige Pulswechselrichter darstellen und ihre Algorithmen an Beispielen durchführen,
- nichtideale Eigenschaften von dreiphasigen Pulswechselrichtern erläutern, die Auswirkungen charakterisieren und Gegenmaßnahmen benennen,
- Leistungselektronische Schaltungen mit Schwingkreisen berechnen sowie die Konzepte des "Soft Switching" erläutern,
- Einfache potentialtrennende Gleichspannungswandler sowie die darin verwendeten magnetischen Bauteile berechnen,
- Stromrichterkonzepte für hohe Spannungen und Leistungen wiedergeben.

Inhalt

Steuerverfahren für Pulswechselrichter, Nichtideale Eigenschaften von Pulswechselrichtern, Schwingkreis- und Resonanz-Stromrichter, Betrieb mit hoher Schaltfrequenz, Schaltnetzteile mit Potentialtrennung, selbstgeführte Umrichter hoher Leistung.

Teilnahmevoraussetzungen und -empfehlungen

Leistungselektronik I oder entsprechende Kenntnisse und Kompetenzen

Literatur

Vorlesungsskript;

 $Mohan/Undeland/Robbins: Power \ Electronics: Converters, Applications \ and \ Design, \ John \ Wiley \ \pounds \ Sons,$

Stand: 19.09.2024

New York

Weitere Angaben

mit Laborübung als Studienleistung

Baut auf den Inhalten von Leistungselektronik I auf.

Für PO2017/5LP ist über den 1L-Laboranteil eine Studienleistung nachzuweisen.

Nachhaltige Ve	rbrennungstech	Sprache Deutsch		
Modultitel englisch			Kompetenzbereich	
Combustion Technology		Kompetenzbereich Allgemeine Energietechnik		
Angebot im WS 20	24/25		Modultyp	
nur Prüfung			Wahl-Pflicht	
Prüfungsform			Prüfungsbewertung	
Klausur (90 min)			benotet	
Studienleistung \		Empfohlenes Fachsemester		
Studentische Arbeit	sleistung		Frequenz jährlich	
Gesamt: 150 Stunder	n; davon Präsenz: 60	Stunden; davon		
Selbststudium: 90 St	unden			
SWS	LP (ECTS)	Dozent/in	Prüfer/in	
2 V + 1 Ü + 1 L	5 LP		Dinkelacker	
Schwerpunkt / Micro-Degree keine		Bei Seminar: Se	mesterthema (dt/en)	
Organisationseinheit		Modulverantwo	rtlicher	
Institut für Technisch	ne Verbrennung	Dinkelacker	Dinkelacker	

Webseite

http://www.itv.uni-hannover.de

Qualifikationsziele

Das Modul vermittelt die Grundlagen der Verbrennungstechnik und ihre Anwendung.

Nach erfolgreicher Absolvierung des Moduls sind die Studierenden in der Lage,

- •verschiedene Verbrennungen zu unterscheiden und im Detail zu beschreiben,
- •Verbrennungsvorgänge zu bilanzieren,
- •typische Anwendungsbeispiele für unterschiedliche Verbrennungstypen zu erläutern,
- •Potentiale zur Reduzierung von Schadstoffemissionen aufzuzeigen und zu bewerten.

Inhalt

Inhalte:

- •Grundbegriffe, Grundlagen der Flammentypen und Flammenausbreitung
- •Stoffmengen-, Massen- und Energiebilanz
- Reaktionskinetik
- Zündprozesse
- Kennzahlen
- •Berechnungs- und Modellansätze
- Schadstoffbildung
- •Technische Anwendungen

Teilnahmevoraussetzungen und -empfehlungen

Empfohlen: Grundbegriffe der Thermodynamik

Literatur

Dinkelacker, Leipertz: Einführung in die Verbrennungstechnik

Joos: Technische Verbrennung

Warnatz, Maas, Dibble: Verbrennung

Turns: An Introduction to Combustion: Concepts and Application

Weitere Angaben

Titel bis SoSe 2023: "Verbrennungstechnik."

Zum Modul gehört die Teilnahme an einem Laborversuch.

Nutzung von Solarenergie			Sprache
3	J		Deutsch
Modultitel engl	isch		Kompetenzbereich
Use of Solar Ener	rgy		Kompetenzbereich Allgemeine
			Energietechnik
Angebot im WS	2024/25		Modultyp
Vorlesung und Pr	rüfung		Wahl-Pflicht
Prüfungsform			Prüfungsbewertung
Klausur (90 min)			benotet
Studienleistung			Empfohlenes Fachsemester
\			-
Studentische Ar	beitsleistung		Frequenz
150 h			jedes Semester
SWS	LP (ECTS)	Dozent/in	Prüfer/in
2 V + 2 Ü	5 LP	Kleiss	Kleiss
Schwerpunkt / Micro-Degree		Bei Seminar: Se	mesterthema (dt/en)
keine			
Organisationseinheit		Modulverantwortlicher	
Institut für Elektroprozesstechnik		Kleiss	
141-110-		•	

Webseite

http://www.etp.uni-hannover.de

Qualifikationsziele

Die Studierenden sollen die Möglichkeiten und die Bedingungen der Nutzung solarer Energien erkennen und die verschiedenen Verfahren für die Anwendung auslegen können.

Inhalt

Im Wintersemester: Grundlagen und Motivatin zur Nutzung regenerativer Energieträger (Definitionen, Probleme), Solare Strahlung (Sonnenspektrum, Atmosphäreneinflüsse), Solarthermie (Grundlagen, Umweltaspekte, Wirtschaftlichkeit), Windenergie (Grundlagen, Umweltaspekte, Offshore.

Im Sommersemester: Photovoltaik Grundlagen, Photovoltaik Systemtechnik und Betrieb, Systemtechnik, Wirtschaftlichkeit und Fragen der Netzanbindung

Teilnahmevoraussetzungen und -empfehlungen

Keine

Literatur

Keine

Weitere Angaben

Die Vorlesung geht über zwei Semester und setzt sich aus den früheren Lehrveranstaltungen 'Nutzung von Solarenergie I' und 'Nutzung von Solarenergie II' zusammen.

Die Vorlesung geht über zwei Semester und setzt sich aus den früheren Lehrveranstaltungen 'Nutzung von Solarenergie I' und 'Nutzung von Solarenergie II' zusammen.

Strömungsmech	anik		Sprache Deutsch
Modultitel englisch Fluid Dynamics		Kompetenzbereich Kompetenzbereich Allgemeine Energietechnik	
Angebot im WS 202- Vorlesung und Prüfun		Modultyp Wahl-Pflicht	
Prüfungsform Klausur (90 min)			Prüfungsbewertung benotet
Studienleistung \			Empfohlenes Fachsemester -
Studentische Arbeits Gesamt: 150 Stunden Selbststudium: 90 Stu	; davon Präsenz: 60	Stunden; davon	Frequenz jährlich
SWS	LP (ECTS)	Dozent/in	Prüfer/in
2 V + 2 Ü	5 LP	Seume	Seume
Schwerpunkt / Micro-Degree keine		Bei Seminar: Sei	mesterthema (dt/en)
Organisationseinheit Institut für Turbomaschinen und Fluid- Dynamik		Modulverantwo Seume	rtlicher

Webseite

http://www.tfd.uni-hannover.de/vorlesung.html

Qualifikationsziele

Nach erfolgreicher Absolvierung des Moduls sind die Studierenden in der Lage:

- einfache Strömungsphänomene zu beschreiben,
- die allgemeinen Gleichungen der Massen- und Impulserhaltung herzuleiten,
- die Bedeutung der einzelnen Terme der Navier-Stokes-Gleichungen zu diskutieren,
- für vereinfachte Anwendungsfälle der Strömungsmechanik die Strömungsgrößen zu lösen (inkompressibel und kompressibel).

Inhalt

Im Rahmen der Vorlesung werden Grundlagen der Strömungslehre vermittelt. Hierfür werden Strömungseigenschaften von Fluiden erläutert und die Grundgleichungen zur Beschreibung der Dynamik von Strömungen vorgestellt. Zunächst wird die inkompressible Strömungsmechanik behandelt, in deren Kontext die Hydrostatik sowie Hydrodynamik Lehrinhalte sind und die Grundgleichungen der Strömungsmechanik, wie etwa die Kontinuitätsgleichung sowie Bernoulli-Gleichung, werden hergeleitet. Durch die Anwendung der Grundgleichungen auf technisch relevante, interne und externe Strömungen wird den Studierenden das strömungsmechanische Verständnis in Bezug auf technische Problemstellungen vermittelt. In Hinblick auf aufbauende Vorlesungen wird eine Einleitung in die Gasdynamik gegeben.

Teilnahmevoraussetzungen und -empfehlungen

Thermodynamik, Technische Mechanik IV

Literatur

Oertel, H.; Böhle, M.; Reviol, T.: Grundlagen - Grundgleichungen - Lösungsmethoden- Softwarebeispiele.

6. Auflage, Vieweg + Teubner Verlag Wiesbaden 2011;

Zierep, J.; Bühler, K.: Grundlagen, Statik und Dynamik der Fluide. 7. Auflage, Teubner Verlag Wiesbaden 2008;

Stand: 19.09.2024

Young, D.F.: A brief introduction to fluid mechanics. 5. Auflage, Wiley Verlage Hoboken, NJ 2011; Pijush, K., Cohen, I.M.; Dowling, D.R.: Fluid mechanics, 5. Auflage, Academic Press Waltham, MA 2012. Bei vielen Titeln des Springer-Verlages gibt es im W-Lan der LUH unter www.springer.com eine Gratis Online-Version.

Weitere Angaben

Titel alt: Strömungsmechanik I mit Laborübung als Studienleistung Studienleistung ist AML A Keine

Thermodynami	k II		Sprache	
,			Deutsch	
Modultitel englisch	1	Kompetenzbereich		
Thermodynamics II /	ThermoLab		Kompetenzbereich Allgemeine	
			Energietechnik	
Angebot im WS 20	24/25		Modultyp	
nur Prüfung			Wahl-Pflicht	
Prüfungsform			Prüfungsbewertung	
Klausur (90 min)			benotet	
Studienleistung			Empfohlenes Fachsemester	
1, SoSe			-	
Studentische Arbei	tsleistung		Frequenz	
Gesamt: 150 Stunde	n; davon Präsenz: 75	Stunden; davon	jährlich	
Selbststudium: 75 St	tunden			
SWS	LP (ECTS)	Dozent/in	Prüfer/in	
2 V + 2 Ü + 1 L	5 LP		Kabelac	
Schwerpunkt / Mic	ro-Degree	Bei Seminar: Se	Bei Seminar: Semesterthema (dt/en)	
keine				
Organisationseinheit		Modulverantwo	Modulverantwortlicher	
IFT		IFT	IFT	

Webseite

http://www.ift.uni-hannover.de

Qualifikationsziele

Nach erfolgreichem Abschluss dieses Moduls sind die Studierenden in der Lage:

- verschiedene Pfade zur Umwandlung von Primärenergie in Nutzenergie zu beschreiben.
- verschiedene technisch relevante Energiewandler wie Feuerungen, Brennstoffzellen, Gasturbinenanlagen und Dampfkraftwerke quantitativ zu bilanzieren und zu bewerten.
- die Umweltproblematik durch Verbrennung fossiler Brennstoffe zu beschreiben und Lösungen aufzuzeigen.
- die Bewertung der Umwandlungsfähigkeit von Energieformen durch den Exergiebegriff zu erweitern.
- die Bedeutung der Energiewandlung und der dazugehörigen Energietechnik für eine nachhaltige Energiewende zu beschreiben.

Durch das Labor werden Kompetenzen in der praktischen Handhabung von Energiewandlern im Labormaßstab erworben, sowie die Sozialkompetenz durch Gruppenarbeit gefördert.

Inhalt

Dieses Modul umfasst die Lehrveranstaltung Thermodynamik II und das dazugehörige Labor Thermolab. Das Modul rundet die im Modul "Thermodynamik I/Chemie" vermittelten Grundlagen der technischen Thermodynamik ab, indem die Hauptsätze der Thermodynamik auf verschiedene

Energiewandlungsprozesse angewendet werden. Dabei werden insbesondere nachhaltige

Energiewandlungsprozesse wie die Brennstoffzelle hervorgehoben. Es werden folgende Inhalte behandelt:

- Verbrennung und Brennstoffzelle
- Dampfkreisprozess, Stirling-Maschine und Gasturbinenanlage als Wärmekraftmaschine
- Das moderne Kraftwerk / CO2 Sequestrierung CC

- Strömungs- und Arbeitsprozesse
- Exergie und Anergie Wärmepumpe, Kältemaschine, Klimatechnik und Feuchte Luft

Teilnahmevoraussetzungen und -empfehlungen

Thermodynamik I

Literatur

Baehr, H.D. und Kabelac, S.: Thermodynamik, 16. Aufl.; Berlin, Heidelberg: Springer-Verl., 2016 Stephan, P., Schaber, K., Stephan, K., Mayinger, F.: Thermodynamik - Grundlagen und technische Anwendungen (Band 1 & 2), 15. Aufl.; Berlin, Heidelberg: Springer-Verl., 2010

Stand: 19.09.2024

Moran, M. J.; Shapiro, H. M.; Boettner D. D. und Bailey, B. B.: Fundamentals of Engineering Thermodynamics, 8th ed. Hoboken: Wiley, 2014

Kondepudi, D.: Modern Thermodynamics, 2nd ed.; Hoboken: Wiley, 2014

Weitere Angaben

Titel alt: Thermodynamik II / ThermoLab mit Laborübung (thermolab) als Studienleistung 2 Labore als Studienleistung

Verbrennungsmo	toren l		Sprache	
_			Deutsch	
Modultitel englisch			Kompetenzbereich	
Internal Combustion E	ngines l		Kompetenzbereich Allgemeine	
			Energietechnik	
Angebot im WS 2024	4/25		Modultyp	
Vorlesung und Prüfung	g		Wahl-Pflicht	
Prüfungsform			Prüfungsbewertung	
Klausur (min)			benotet	
Studienleistung			Empfohlenes Fachsemester	
Keine			-	
Studentische Arbeits	leistung		Frequenz	
Gesamt: 150 Stunden;	davon Präsenz: 60	Stunden; davon	jährlich	
Selbststudium: 90 Stu	nden			
SWS	LP (ECTS)	Dozent/in	Prüfer/in	
2 V + 2 Ü	5 LP	Dinkelacker		
Schwerpunkt / Micro-Degree keine		Bei Seminar: Sen	nesterthema (dt/en)	
Organisationseinheit		Modulverantwor	tlicher	
Institut für Technische Verbrennung		Dinkelacker	Dinkelacker	

Webseite

http://www.itv.uni-hannover.de

Qualifikationsziele

Das Modul vermittelt die Grundlagen zu Aufbau, Funktion und Berechnung des Verbrennungsmotors. Nach erfolgreicher Absolvierung des Moduls sind die Studierenden in der Lage,

- •die Funktionsweise von Otto- und Dieselmotoren im Detail zu erläutern,
- •einen Motor thermodynamisch und mechanisch zu berechnen,
- •ottomotorische und dieselmotorische Brennverfahren zu erläutern und im Detail zu charakterisieren.

Inhalt

Inhalte:

- •Gesellschaftliche Einbindung von Verbrennungsmotoren
- •Konstruktiver Aufbau
- Kreisprozesse
- •Grundlagen der Verbrennung
- •Otto- und Dieselmotoren
- Motorkennfelder
- Schadstoffe
- Abgasnachbehandlung
- Alternative Antriebskonzepte

Teilnahmevoraussetzungen und -empfehlungen

Thermodynamik I

Literatur

Grohe, Russ: Otto- und Dieselmotoren (Vogel Fachbuchverlag, ab 14. Auflage); Todsen: Verbrennungsmotoren, Hanser Verlag

Weitere Angaben

Die Aufteilung Vorlesung / Hörsaalübung wird flexibel gewählt sein.

Windenergi	etechnik I		Sprache
3			Englisch
Modultitel eng	lisch		Kompetenzbereich
Wind Energy Te	chnology l		Kompetenzbereich Allgemeine
			Energietechnik
Angebot im W	S 2024/25		Modultyp
Vorlesung und f	Prüfung		Wahl-Pflicht
Prüfungsform			Prüfungsbewertung
mündl. Prüfung	(MP)		benotet
Studienleistun	g		Empfohlenes Fachsemester
1, WiSe/SoSe			-
Studentische A	rbeitsleistung		Frequenz
150 h			jedes Semester
SWS	LP (ECTS)	Dozent/in	Prüfer/in
2 V + 2 Ü	5 LP	Reuter	Reuter
Schwerpunkt / Micro-Degree		Bei Seminar: Se	mesterthema (dt/en)
keine			
Organisationseinheit		Modulverantwortlicher	
Institut für Windenergiesysteme		Reuter	
		•	

Webseite

https://www.iwes.uni-hannover.de

Qualifikationsziele

This module is the first of two modules that introduce to the foundations of design, planning and operation of wind turbines. After successful completion of the module students can

- explicate the components of a wind turbine and explain their functionalities,
- explain the physics of the wind & calculate the energy yield for given boundary conditions,
- conduct an aerodynamic design of rotor blades for optimum conditions,
- utilize and explain the blade element method and the steady-state blade element momentum theory,
- compare the behavior of fast and slow running turbines,
- judge the significance of different loss types for different turbine configurations,
- compile a power curve,
- explicate different control strategies for power limitation,
- judge scaling boundaries on the basis of the similarity theory,
- explicate advantages and deficiencies of different drive train concepts,
- explain the requirements of turbine certification,
- describe different support structures of offshore wind turbines and explain their functionalities.

Inhalt

- Introduction and history of wind turbine design
- Wind physics and energy yield assessment
- Aerodynamic, mechanical and electrical design of wind turbines,
- Design of wind turbines according to Betz and Schmitz theory,
- Characteristic diagrams and partial load behavior,
- Compilation of a power curve,
- Control strategies for power limitation,

- Scaling and similarity theory
- Offshore wind energy
- Modellgesetze und Ähnlichkeitsregeln
- Einige Aspekte der Offshore-Windenergie

Teilnahmevoraussetzungen und -empfehlungen

keine

Literatur

- Gasch, R.; Twele, J.: Windkraftanlagen - Grundlagen, Entwurf, Planung und Betrieb, 8. Auflage, Vieweg + Teubner Verlag Wiesbaden, 2013

Stand: 19.09.2024

- Weitere Literatur wird in der Lehrveranstaltung angegeben
- Weitere Literatur wird in der Lehrveranstaltung angegeben

Weitere Angaben

mit Hausübung als Studienleistung

Die Studienleistung ist eine unbenotete Hausübung.

Das Modul wird im Sommersmester nur auf Englisch mit dem Modultitel "Wind Energy Technology I" abgeboten.

"Windenergietechnik I" findet nur im WiSe statt!

Excursion to a wind turbine manufacturer; in winter semester the course is given in German; lecture slides are in English. in summer semester the course is given in English.

Wärmepumpen	und Kälteanlag	Sprache	
		Deutsch	
Modultitel englisch	1		Kompetenzbereich
Heat pumps and ref	rigeration cycles		Kompetenzbereich Allgemeine
			Energietechnik
Angebot im WS 20	24/25		Modultyp
nur Prüfung			Wahl-Pflicht
Prüfungsform			Prüfungsbewertung
Klausur (min)			benotet
Studienleistung			Empfohlenes Fachsemester
1, WiSe			-
Studentische Arbei	tsleistung		Frequenz
150 h			jährlich
SWS	LP (ECTS)	Dozent/in	Prüfer/in
2 V + 1 Ü + 1 L	5 LP		Kabelac
Schwerpunkt / Micro-Degree		Bei Seminar: Ser	nesterthema (dt/en)
keine			
Organisationseinheit		Modulverantwor	tlicher
IFT		Kabelac	

Webseite

_

Qualifikationsziele

Das Modul vermittelt Kenntnisse zu Kreisprozessen zur kontinuierlichen Kälteerzeugung sowie zur Bereitstellung von Wärme. Dazu werden verschiedene Wärmepumpen-Verfahren vorgestellt und im Detail erläutert.

Nach erfolgreichem Absolvieren des Moduls sind die Studierenden in der Lage,

- den Aufbau und die Funktionsweise verschiedener Maschinen zur Kälteerzeugung zu erläutern,
- Kreisprozesse der vorgestellten Kältemaschinen zu beschreiben,
- effizienzsteigernde Maßnahmen zu identifizieren,
- Anlagenkomponenten der Kältemaschinen und deren Zusammenwirken widerzugeben und
- die Umweltrelevanz verschiedener Kältemittel einzuordnen.

Inhalt

Modulinhalte

Grundaufgabe der Heiz- und Kältetechnik, Übersicht von Verfahren zur Kälteerzeugung, Grundlagen zu relevanten Kreisprozessen, Dampf-Kompressionskältemaschine, Bauarten und theoretische Grundlagen zu Kompressoren und Verdampfer, Kältemittel und Öl, Prinzip der Absorptionskältemaschine,

Tieftemperaturtechnik: Gasverflüssigung mit Linde- und Stirling-Prozess.

Weiterhin zwei Laboreinheiten, in welchen die Studierenden in Kleingruppen Verfahren zur Kältebereitstellung untersuchen.

Teilnahmevoraussetzungen und -empfehlungen

Thermodynamik I und Thermodynamik II

Literatur

Baehr, H.D. und Kabelac, S.: Thermodynamik, 16. Aufl.; Berlin, Heidelberg: Springer-Verl. 2016

Bonin, J.: Handbuch Wärmepumpen. 3. Aufl. Berlin: Beuth-Verlag 2017

Weitere Angaben

Titel alt: Kälteanlagen und Wärmepumpen mit Laborübung als Studienleistung Vorlesungsbegleitendes Labor

Wärmeübertra	gung		Sprache	
,	3	Deutsch		
Modultitel englisc	h	Kompetenzbereich		
Heat Transfer			Kompetenzbereich Allgemeine	
			Energietechnik	
Angebot im WS 20	024/25		Modultyp	
Vorlesung und Prüf	ung		Wahl-Pflicht	
Prüfungsform			Prüfungsbewertung	
Klausur (90 min)			benotet	
Studienleistung			Empfohlenes Fachsemester	
1, WiSe			-	
Studentische Arbe	itsleistung		Frequenz	
Gesamt: 150 Stunde	en; davon Präsenz: 60	Stunden; davon	jährlich	
Selbststudium: 90 S	tunden			
SWS	LP (ECTS)	Dozent/in	Prüfer/in	
2 V + 1 Ü + 1 L	5 LP	Kabelac	Kabelac	
Schwerpunkt / Micro-Degree keine		Bei Seminar: Se	mesterthema (dt/en)	
Organisationseinheit		Modulverantwo	Modulverantwortlicher	
IKW		IKW	IKW	

Webseite

http://www.ikw.uni-hannover.de

Qualifikationsziele

Qualifikationsziele Das Modul vermittelt grundlegende Kenntnisse über die Mechanismen der Wärmeübertragung Nach erfolgreicher Absolvierung des Moduls sind die Studierenden in der Lage,

- •aufbauend auf thermodynamischen Gesetzen die Mechanismen der Wärmeübertragung zu verstehen,
- •die passende Modellvorstellung für ein reales, wärmeübertragungstechnisches Problem zu finden und durch das Treffen geeigneter Annahmen eine Reduktion auf einen hinreichend genauen Lösungsansatz vorzunehmen,
- •Ansätze zur Lösung von Wärmeübertragungsproblemen durch Anwendung geeigneter Korrelationen quantitativ zu lösen und grundlegende wärmetechnische Auslegungen einfacher Wärmeübertrager durchzuführen. Die Kenntnisse versetzen die Studierenden in die Lage, Effizienzsteigerung, Verbesserung der Nachhaltigkeit und Maßnahmen zur Ressourcenschonung zu verstehen und umzusetzen.

Inhalt

Inhalt:

- •Stationärer Wärmedurchgang
- Wärmestrahlung
- •Instationäre Wärmeleitung
- •Wärmeübertragung an Rippen
- •Auslegung von Wärmeübertragern
- •Konvektiver Wärmetransport
- •Einführung in das Sieden und Kondensieren

Teilnahmevoraussetzungen und -empfehlungen

Thermodynamik I und II

Literatur

VDI-Wärmeatlas, 10. Aufl. Springer, 2006.

H.D. Baehr / K. Stephan: Wärme- und Stoffübertragung, 7. Aufl. Springer, 2010.

J. Kopitz / W. Polifke: Wärmeübertragung 2. Aufl. Pearson Studium, 2010.

Incropera, F.P.; Dewitt, D.P.; Bergman, T.L., Lavine, A.S.: Principles of heat and mass transfer, 7. Aufl., John Wiley & Sons Singapore Pte. Ltd., 2013.

Stand: 19.09.2024

Weitere Angaben

Titel alt: Wärmeübertragung I mit Laborübung als Studienleistung

keine

1.6. Kompetenzbereich Effiziente Energiewandlung und Nutzung

Stand: 19.09.2024

Englischer Titel: Efficient energy conversion and usage

Information zum : 25 LP, WP

Elektrische Antri	ebssysteme		Sprache
	,		Deutsch
Modultitel englisch			Kompetenzbereich
Electrical Drive System	S		Kompetenzbereich Effiziente
			Energiewandlung und Nutzung
Angebot im WS 2024	1/25		Modultyp
nur Prüfung			Wahl-Pflicht
Prüfungsform			Prüfungsbewertung
mündl. Prüfung (MP)			benotet
Studienleistung			Empfohlenes Fachsemester
1, SoSe			-
Studentische Arbeitsl	eistung		Frequenz
Workload: Gesamt 150	h / Präsenz 56 h / Selb	ostlernen 94 h	jährlich
SWS	LP (ECTS)	Dozent/in	Prüfer/in
2 V + 1 Ü + 1 L	5 LP		Ponick
Schwerpunkt / Micro	-Degree	Bei Seminar: Semesterthema (dt/en)	
keine			
Organisationseinheit		Modulverantwortlicher	
Institut für Antriebssysteme und		Ponick, IAL	
Leistungselektronik , lr	stitut für		
Antriebssysteme und L	eistungselektronik		

Webseite

http://www.ial.uni-hannover.de/vorlesungen.html

Qualifikationsziele

Das Modul vertieft die bereits bekannten grundlegenden Kenntnisse über Synchron und Induktionsmaschinen um spezifische Einsichten in deren Betriebsverhalten im gesamten Antriebssystem, d. h. um die Wechselwirkungen mit dem speisenden Netz bzw. Frequenzumrichter einerseits und der angetriebenen Arbeitsmaschine andererseits. Die Studierenden lernen, – praktisch relevante Wechselwirkungen wie Schwingungsanregungen beim Anlauf, beim Betrieb am Frequenzumrichter oder bei transienten Vorgängen selbstständig zu analysieren,– die spezifischen Eigenschaften der möglichen Kombinationen aus Frequenzumrichter und elektrischer Maschine sowie wichtige nicht-elektrische Effekte zu Kühlung, Lagerung oder Geräuschentwicklung zu beurteilen, – den Anlauf und elektrische Bremsverfahren von direkt netzbetriebenen Drehfeldmaschinen anforderungsgerecht zu konzipieren.

Inhalt

Betriebsverhalten von Induktionsmaschinen unter Berücksichtigung von R1

Besonderheiten der Antriebsarten beim Einschalten und beim Hochlauf: Betrachtung der Stoßgrößen, der Erwärmung und der Drehmoment-Drehzahl-Kennlinie einschl. Sattelmomentbildung; Anlasshilfen

Elektrische Bremsverfahren bei den unterschiedlichen Maschinenarten: Gegenstrombremsen, Gleichstrombremsen, generatorisches Nutzbremsen

Möglichkeiten der Drehzahlstellung bei Induktions- und Synchronmotoren; Leistungselektronische Grundschaltungen, Vergleich bzgl. zusätzlicher Kosten und Verluste, Erzeugung von Pendelmomenten

Erwärmung und Kühlung elektrischer Maschinen: Kühlkonzepte, Ermittlung der Wicklungserwärmung, Betriebsarten, Anforderungen an die Energieeffizienz, Transiente Wicklungserwärmung

Stand: 19.09.2024

Einführung in Berechnungsverfahren der symmetrischen Komponenten für Augenblickswerte und der Park-Transformation (Spannungsgleichungen, Augenblickswert des elektromagnetischen Drehmomentes) zur Simulation transienter Vorgänge. Nachbildung des mechanischen Wellenstranges (mehrgliedrige Schwinger, Betrachtungen zur mechanischen Dämpfung), Berücksichtigung der transienten Stromverdrängung

Ausgleichsvorgänge in Induktionsmaschinen (Einschalten, symmetrische und unsymmeterische Klemmenkurzschlüsse, Spannungs-Wiederkehr, Netzumschaltungen)

Ausgleichsvorgänge in Synchronmaschinen mit Vollpol- oder Schenkelpol-Läufern (Einschalten von direkt am Netz liegenden Motoren, Einfluss der Dämpferwicklung und von Läufer-Anisotropien, symmetrische und unsymmetrische Klemmenkurzschlüsse aus dem Leerlauf oder einem Lastzustand, Fehlsynchronisation). Reaktanzen und Zeitkonstanten von Synchronmaschinen

Konstruktive Einzelheiten: Bauformen, Schutzarten, explosionsgeschützte Maschinen, gegenseitige Beeinflussung von Kupplungs- und Lagerungsarten, Lagerspannungen und Lagerströme

Akustik elektrischer Antriebe: Betrachtungen zur Geräuschentwicklung und ihrer Beurteilung.

Teilnahmevoraussetzungen und -empfehlungen

Grundlagen der elektromagnetischen Energiewandlung (notwendig)

Literatur

Seinsch: Grundlagen elektrischer Maschinen und Antriebe;

Seinsch: Ausgleichsvorgänge bei elektrischen Antrieben;

Skriptum zur Vorlesung

Weitere Angaben

mit Laborübung als Studienleistung

Für PO2017/5LP ist über den 1L-Laboranteil eine Studienleistung in Form von zwei Laborversuchen nachzuweisen.

Elektrische Energiespeichersysteme			Sprache
			Deutsch
Modultitel englisch			Kompetenzbereich
Electrical energy storage	ge systems		Kompetenzbereich Effiziente
			Energiewandlung und Nutzung
Angebot im WS 2024/25			Modultyp
Vorlesung und Prüfung	9		Wahl-Pflicht
Prüfungsform			Prüfungsbewertung
Klausur (90 min)			benotet
Studienleistung			Empfohlenes Fachsemester
1, WiSe			-
Studentische Arbeitsl	eistung		Frequenz
Gesamt: 150 Stunden;	davon Präsenz: 75 Stu	nden; davon	jährlich
Selbststudium: 75 Stur	Selbststudium: 75 Stunden		
SWS	LP (ECTS)	Dozent/in	Prüfer/in
2 V + 2 Ü + 1 L	5 LP	Hanke-	Hanke-Rauschenbach
		Rauschenbach	
Schwerpunkt / Micro-Degree		Bei Seminar: Semesterthema (dt/en)	
keine			
Organisationseinheit		Modulverantwortlicher	
Institut für Elektrische Energiesysteme, FG		Bensmann	
Elektrische Energiespeichersysteme			

Webseite

http://www.ifes.uni-hannover.de/ees.html

Qualifikationsziele

Die Teilnehmerinnen und Teilnehmer der Veranstaltung verfügen über einen profunden Überblick über verschiedene Speichertechnologien. Sie kennen alle nötigen Kenngrößen zum Vergleich der Technologien untereinander. Für jede Technologie sind die Teilnehmerinnen und Teilnehmer mit dem Aufbau, dem Funktionsprinzip, technischen Realisierungen und der groben Kostenstruktur vertraut. Ferner sind sie in der Lage das Betriebsverhalten des jeweiligen Speichers mit Hilfe eines Minimalmodells zu beschreiben. Darüber hinaus sind die Teilnehmerinnen und Teilnehmer mit den typischen Anwendungsfeldern für Speicher vertraut und kennen jeweils die Anforderungen und die typisch eingesetzten Speichertechnologien.

Inhalt

Einleitung und Übersicht (Klassifikation, Kenngrößen);

Speicherung in Form von elektrischer und magnetischer Feldenergie (Superkondensatoren, Supraleitende Spulen);

Speicherung in Form von mechanischer Energie (Pumpspeicher, Druckluftspeicher, Schwungradspeicher);

Speicherung in Form von chemischer Energie (Akkumulatoren, Redoxflow-Speicher, Wasserelektrolyse und darauf aufbauende Speicher-/ Nutzungspfade);

Speicherung in Form von thermischer Energie;

Einsatzfelder, Anforderungen und eingesetzte Speichertechnologien (tragbare Kleingeräte, Traktion, stationäre Energieversorgung)

Stand: 19.09.2024

Teilnahmevoraussetzungen und -empfehlungen

keine besonderen Vorkenntnisse nötig

Literatur

M. Sterner, I. Stadler: Energiespeicher – Bedarf, Technologien, Integration, Springer-Verlag, Berlin 2014

A. Hauer, J. Quinnell, E. Lävemann: Energy Storage Technologies - Characteristics, Comparison, and Synergies, in: Transition to Renewable Energy Systems, ed. D. Stolten, Wiley-VCH, Weinheim 2013

VDI-Bericht Band 2058: Elektrische Energiespeicher. Schlüsseltechnologie für energieeffiziente Anwendungen, VDI-Verlag, Düsseldorf, 2009

Weitere Angaben

Titel bis SoSe 2022: Energiespeicher I mit Laborübung als Studienleistung mit Laborübung als Studienleistung

Diese Veranstaltung umfasst eine Studienleistung in Form eines Laborversuchs für den 1 LP (siehe Bemerkungen) angerechnet wird. Die Terminabstimmung erfolgt während des Semesters.

Elektrothermisc	he Verfahren		Sprache	
			Deutsch	
Modultitel englisch			Kompetenzbereich	
Electrothermal Proces	sses		Kompetenzbereich Effiziente	
			Energiewandlung und Nutzung	
Angebot im WS 202	24/25		Modultyp	
Vorlesung und Prüfur	ng		Wahl-Pflicht	
Prüfungsform			Prüfungsbewertung	
mündl. Prüfung (MP)			benotet	
Studienleistung			Empfohlenes Fachsemester	
\			-	
Studentische Arbeit	sleistung		Frequenz	
Gesamt: 150 Stunder	ı; davon Präsenz: 60 S	tunden; davon	jährlich	
Selbststudium: 90 Stu	ınden			
SWS	LP (ECTS)	Dozent/in	Prüfer/in	
2 V + 1 Ü + 1 L	5 LP	Baake	Baake	
Schwerpunkt / Micro-Degree		Bei Seminar: Se	Bei Seminar: Semesterthema (dt/en)	
keine				
Organisationseinheit		Modulverantwo	Modulverantwortlicher	
Institut für Elektrothermische Prozesstechnik		ik ETP	ETP	
			·	

Webseite

http://www.etp.uni-hannover.de

Qualifikationsziele

Die Studierenden sollen die unterschiedlichen Verfahren der elektrothermischen Prozesstechnik verstehen und qualitative und quantitave Lösungsmöglichkeiten für Probleme der Praxis erarbeiten können.

Inhalt

Energiewirtschaftliche Bedeutung, Eigenschaften und Einsatzbereiche, thermische und elektrotechnische Grundlagen des Ofenbaus, Umwandlung elektrischer in thermische Energie mit Berechnungsbeispielen für induktive, dielektrische und konduktive Erwärmung, Widerstands- und Lichtbogenerwärmung

Teilnahmevoraussetzungen und -empfehlungen

keine

Literatur

Weitere Angaben

mit Laborübung als Studienleistung

Für PO2017/5LP ist über den 1L-Laboranteil eine Studienleistung nachzuweisen.

Diese Lehrveranstaltung trägt zu den folgenden Zielen für nachhaltige Entwicklung (Sustainable Development Goals, SDGs) bei:

SDG 7: Bezahlbare und saubere Energie

SDG 9: Industrie, Innovation und Infrastruktur

SDG 13: Maßnahmen zum Klimaschutz

Grundlagen der Turbomaschinen			Sprache	
		Deutsch		
Modultitel englisch			Kompetenzbereich	
Aerothermodynamics (of Turbomachinery		Kompetenzbereich Effiziente	
			Energiewandlung und Nutzung	
Angebot im WS 2024	4/25		Modultyp	
Vorlesung und Prüfung	g		Wahl-Pflicht	
Prüfungsform			Prüfungsbewertung	
Klausur (min)			benotet	
Studienleistung			Empfohlenes Fachsemester	
			-	
Studentische Arbeitsleistung			Frequenz	
Gesamt: 150 Stunden; davon Präsenz: 60 Stunden; davon			jährlich	
Selbststudium: 90 Stu	nden			
SWS	LP (ECTS)	Dozent/in	Prüfer/in	
2 V + 1 Ü + 1 P	5 LP	Seume	Seume	
Schwerpunkt / Micro-Degree		Bei Seminar: Sei	Bei Seminar: Semesterthema (dt/en)	
keine				
Organisationseinheit		Modulverantwo	Modulverantwortlicher	
Institut für Turbomaschinen und Fluid-		Seume	Seume	
Dynamik				

Webseite

http://www.tfd.uni-hannover.de

Qualifikationsziele

Nach erfolgreicher Absolvierung des Moduls sind die Studierenden in der Lage: – die Grundlegenden aerodynamischen und thermodynamischen Vorgänge in Strömungsmaschinen zu beschreiben – eine grundlegende Auslegung von Strömungsmaschinen im Hinblick auf die gestellten Anforderungen durchzuführen – Grenzen und Herausforderungen der Auslegung im Hinblick auf nachhaltige Technologien zu beschreiben

Inhalt

Die Vorlesung vermittelt thermodynamische und strömungsmechanische Grundlagen von Strömungsmaschinen und wendet diese auf Maschinen axialer- und radialer Bauweise und Diffusoren an. In der Vorlesung wird ein Überblick über verschiedene Anwendungen und Bauformen thermischer Strömungsmaschinen wie Flugtriebwerke, Gas- und Dampfturbinen für Kraftwerke, Turbolader und Prozessverdichter gegeben. Zu den behandelten thermodynamischen Grundlagen zählen die Energieumwandlung in der elementaren Strömungsmaschinenstufe, Kreisprozesse und Wirkungsgrade. Behandelte Grundlagen der Strömungsmaschinen sind u.a. die Auslegung des Schaufelgitters, reale Strömung im Gitter, Aufbau ganzer Stufen aus Gittern.

Teilnahmevoraussetzungen und -empfehlungen

Zwingend: Thermodynamik und Strömungsmechanik I; Empfohlen: Strömungsmechanik II

Literatur

Wilson, David Gordon; Korakianitis, Theodosios: The Design of High-efficiency Turbomachinery and Gas Turbines. London: Prentice Hall, 1998.

Traupel, Walter: Thermische Turbomaschinen: Thermodynamisch-strömungstechnische Berechnung. Berlin Heidelberg New York: Springer-Verlag, 2012.

Stand: 19.09.2024

Weitere Angaben

Titel alt: Aerothermodynamik der Strömungsmaschinen mit Tutorium als Studienleistung

Das Modul besteht aus Vorlesung, Übung und dem Tutorium "Auslegung, Simulation und Erprobung eines ebenen Schaufelgitters". Die schriftliche Prüfung ist unabhängig vom Tutorium, die Teilnahme am Tutorium ist jedoch zum Abschluss des Moduls mit 5 ETCS erforderlich.

Leistungselektronik I			Sprache Deutsch
Modultitel englisch Power Electronics I			Kompetenzbereich Kompetenzbereich Effiziente Energiewandlung und Nutzung
Angebot im WS 2024/25 Vorlesung und Prüfung			Modultyp Wahl-Pflicht
Prüfungsform Klausur (90 min)			Prüfungsbewertung benotet
Studienleistung 1, WiSe			Empfohlenes Fachsemester -
Studentische Arbeitsleistung Gesamt: 150 Stunden; davon Präsenz: 60 Stun Selbststudium: 90 Stunden		nden; davon	Frequenz jährlich
SWS	LP (ECTS)	Dozent/in	Prüfer/in
2 V + 1 Ü + 1 L	5 LP	Mertens	Mertens
Schwerpunkt / Micro-Degree keine		Bei Seminar: Semesterthema (dt/en)	
Organisationseinheit Institut für Antriebssysteme und Leistungselektronik, FG Leistungselektronik, Institut für Antriebssysteme und Leistungselektronik		Modulverantwo Mertens, IAL	rtlicher

Webseite

http://www.ial.uni-hannover.de/

Qualifikationsziele

Die Studierenden erwerben in diesem Modul grundlegende Kenntnisse der Funktionsprinzipien, Bauelemente und Schaltungen der Leistungselektronik.

Nach erfolgreichem Abschluss der LV können die Studierenden

- Aufbau und Eigenschaften von Leistungshalbleitern darlegen
- Aktive und passive Bauelemente für die jeweilige Anwendung passend auswählen und dimensionieren
- netzgeführte Stromrichter und ihr Betriebsverhalten sowie ihre Netzrückwirkungen charakterisieren und berechnen
- Einfache selbstgeführte Stromrichter (Gleichstromsteller) konfigurieren und berechnen
- Dreiphasige Wechselrichter erläutern und für den jeweiligen Einsatzfall berechnen
- Einfache Systeme aus mehreren Stromrichtern konfigurieren

Inhalt

Leistungselektronik (LE) zur Energieumformung mit hohem Wirkungsgrad, Anwendungsfelder der LE, Bauelemente der LE, Netzgeführte Gleichrichter, Netzrückwirkungen, Gleichstromsteller, Wechselrichter mit eingeprägter Spannung, zusammengesetzte Stromrichter und Umrichter

Teilnahmevoraussetzungen und -empfehlungen

Grundlagen der Elektrotechnik (notwendig), Grundlagen der Halbleitertechnik (empfohlen)

Literatur

K. Heumann: Grundlagen der Leistungselektronik

Vorlesungsskript

Weitere Angaben

mit Laborübung als Studienleistung

Für PO2017/5LP ist über den 1L-Laboranteil eine Studienleistung nachzuweisen.

Leistungselektronik II			Sprache Deutsch	
Modultitel englisch			Kompetenzbereich	
Power Electronics II			Kompetenzbereich Effiziente Energiewandlung und Nutzung	
Angebot im WS 2024/25 nur Prüfung			Modultyp Wahl-Pflicht	
Prüfungsform Klausur (90 min)			Prüfungsbewertung benotet	
Studienleistung 1, SoSe			Empfohlenes Fachsemester -	
Studentische Arbeitsl Gesamt: 150 Stunden; Selbststudium: 90 Stur	davon Präsenz: 60	Stunden; davon	Frequenz jährlich	
SWS	LP (ECTS)	Dozent/in	Prüfer/in	
2 V + 1 Ü + 1 L	5 LP		Mertens	
Schwerpunkt / Micro-Degree keine		Bei Seminar: Sei	Bei Seminar: Semesterthema (dt/en)	
Organisationseinheit Institut für Antriebssysteme und Leistungselektronik		Modulverantwor	rtlicher	

Webseite

http://www.ial.uni-hannover.de/vorlesungen.shtml#LE2

Qualifikationsziele

Aufbauend auf den Grundlagen aus Leistungselektronik I,werden in diesem Modul vertiefte und anwendungsorientierte Kenntnisse über leistungselektronische Schaltungen und Steuerverfahren vermittelt.

Nach erfolgreichem Abschluss des Moduls können die Studierenden

- Raumzeiger-Modulationsverfahren für dreiphasige Pulswechselrichter darstellen und ihre Algorithmen an Beispielen durchführen,
- nichtideale Eigenschaften von dreiphasigen Pulswechselrichtern erläutern, die Auswirkungen charakterisieren und Gegenmaßnahmen benennen,
- Leistungselektronische Schaltungen mit Schwingkreisen berechnen sowie die Konzepte des "Soft Switching" erläutern,
- Einfache potentialtrennende Gleichspannungswandler sowie die darin verwendeten magnetischen Bauteile berechnen,
- Stromrichterkonzepte für hohe Spannungen und Leistungen wiedergeben.

Inhalt

Steuerverfahren für Pulswechselrichter, Nichtideale Eigenschaften von Pulswechselrichtern, Schwingkreis- und Resonanz-Stromrichter, Betrieb mit hoher Schaltfrequenz, Schaltnetzteile mit Potentialtrennung, selbstgeführte Umrichter hoher Leistung.

Teilnahmevoraussetzungen und -empfehlungen

Leistungselektronik I oder entsprechende Kenntnisse und Kompetenzen

Literatur

Vorlesungsskript;

 $Mohan/Undeland/Robbins: Power \ Electronics: Converters, Applications \ and \ Design, \ John \ Wiley \ \pounds \ Sons,$

Stand: 19.09.2024

New York

Weitere Angaben

mit Laborübung als Studienleistung

Baut auf den Inhalten von Leistungselektronik I auf.

Für PO2017/5LP ist über den 1L-Laboranteil eine Studienleistung nachzuweisen.

Strömungsmechanik			Sprache Deutsch	
Modultitel englisch			Kompetenzbereich	
Fluid Dynamics			Kompetenzbereich Effiziente Energiewandlung und Nutzung	
Angebot im WS 202	4/25		Modultyp	
Vorlesung und Prüfun	g		Wahl-Pflicht	
Prüfungsform			Prüfungsbewertung	
Klausur (90 min)			benotet	
Studienleistung			Empfohlenes Fachsemester	
\			-	
Studentische Arbeits	leistung		Frequenz	
Gesamt: 150 Stunden	; davon Präsenz: 60	Stunden; davon	jährlich	
Selbststudium: 90 Stu	nden			
SWS	LP (ECTS)	Dozent/in	Prüfer/in	
2 V + 2 Ü	5 LP	Seume	Seume	
Schwerpunkt / Micro-Degree keine		Bei Seminar: Sei	Bei Seminar: Semesterthema (dt/en)	
Organisationseinheit		Modulverantwo	Modulverantwortlicher	
Institut für Turbomaschinen und Fluid-		Seume		
Dynamik				

Webseite

http://www.tfd.uni-hannover.de/vorlesung.html

Qualifikationsziele

Nach erfolgreicher Absolvierung des Moduls sind die Studierenden in der Lage:

- einfache Strömungsphänomene zu beschreiben,
- die allgemeinen Gleichungen der Massen- und Impulserhaltung herzuleiten,
- die Bedeutung der einzelnen Terme der Navier-Stokes-Gleichungen zu diskutieren,
- für vereinfachte Anwendungsfälle der Strömungsmechanik die Strömungsgrößen zu lösen (inkompressibel und kompressibel).

Inhalt

Im Rahmen der Vorlesung werden Grundlagen der Strömungslehre vermittelt. Hierfür werden Strömungseigenschaften von Fluiden erläutert und die Grundgleichungen zur Beschreibung der Dynamik von Strömungen vorgestellt. Zunächst wird die inkompressible Strömungsmechanik behandelt, in deren Kontext die Hydrostatik sowie Hydrodynamik Lehrinhalte sind und die Grundgleichungen der Strömungsmechanik, wie etwa die Kontinuitätsgleichung sowie Bernoulli-Gleichung, werden hergeleitet. Durch die Anwendung der Grundgleichungen auf technisch relevante, interne und externe Strömungen wird den Studierenden das strömungsmechanische Verständnis in Bezug auf technische Problemstellungen vermittelt. In Hinblick auf aufbauende Vorlesungen wird eine Einleitung in die Gasdynamik gegeben.

Teilnahmevoraussetzungen und -empfehlungen

Thermodynamik, Technische Mechanik IV

Literatur

Oertel, H.; Böhle, M.; Reviol, T.: Grundlagen - Grundgleichungen - Lösungsmethoden- Softwarebeispiele.

6. Auflage, Vieweg + Teubner Verlag Wiesbaden 2011;

Zierep, J.; Bühler, K.: Grundlagen, Statik und Dynamik der Fluide. 7. Auflage, Teubner Verlag Wiesbaden 2008;

Stand: 19.09.2024

Young, D.F.: A brief introduction to fluid mechanics. 5. Auflage, Wiley Verlage Hoboken, NJ 2011; Pijush, K., Cohen, I.M.; Dowling, D.R.: Fluid mechanics, 5. Auflage, Academic Press Waltham, MA 2012. Bei vielen Titeln des Springer-Verlages gibt es im W-Lan der LUH unter www.springer.com eine Gratis Online-Version.

Weitere Angaben

Titel alt: Strömungsmechanik I mit Laborübung als Studienleistung Studienleistung ist AML A

Verbrennungsmotoren I			Sprache		
3		Deutsch			
Modultitel englisch			Kompetenzbereich		
Internal Combustion Engines I			Kompetenzbereich Effiziente		
			Energiewandlung und Nutzung		
Angebot im WS	2024/25		Modultyp		
Vorlesung und Pri	üfung		Wahl-Pflicht		
Prüfungsform			Prüfungsbewertung		
Klausur (min)			benotet		
Studienleistung			Empfohlenes Fachsemester		
Keine			-		
Studentische Arbeitsleistung			Frequenz		
Gesamt: 150 Stunden; davon Präsenz: 60 Stunden; davon			jährlich		
Selbststudium: 90	Stunden				
SWS	LP (ECTS)	Dozent/in	Prüfer/in		
2 V + 2 Ü	5 LP	Dinkelacker	Dinkelacker		
Schwerpunkt / Micro-Degree keine		Bei Seminar: Ser	Bei Seminar: Semesterthema (dt/en)		
Organisationseinheit		Modulverantwor	Modulverantwortlicher		
Institut für Technische Verbrennung		Dinkelacker			

Webseite

http://www.itv.uni-hannover.de

Qualifikationsziele

Das Modul vermittelt die Grundlagen zu Aufbau, Funktion und Berechnung des Verbrennungsmotors. Nach erfolgreicher Absolvierung des Moduls sind die Studierenden in der Lage,

- •die Funktionsweise von Otto- und Dieselmotoren im Detail zu erläutern,
- •einen Motor thermodynamisch und mechanisch zu berechnen,
- •ottomotorische und dieselmotorische Brennverfahren zu erläutern und im Detail zu charakterisieren.

Inhalt

Inhalte:

- •Gesellschaftliche Einbindung von Verbrennungsmotoren
- Konstruktiver Aufbau
- Kreisprozesse
- •Grundlagen der Verbrennung
- •Otto- und Dieselmotoren
- Motorkennfelder
- Schadstoffe
- Abgasnachbehandlung
- Alternative Antriebskonzepte

Teilnahmevoraussetzungen und -empfehlungen

Thermodynamik I

Literatur

Grohe, Russ: Otto- und Dieselmotoren (Vogel Fachbuchverlag, ab 14. Auflage); Todsen: Verbrennungsmotoren, Hanser Verlag

Weitere Angaben

Die Aufteilung Vorlesung / Hörsaalübung wird flexibel gewählt sein.

1.7. Kompetenzbereich Regenerative Energiesysteme

Englischer Titel: Renewable energy systems

Information zum : 25 LP, WP

Batteriespeiche	rsysteme		Sprache Deutsch	
Modultitel englisch			Kompetenzbereich	
Battery storage syste		Kompetenzbereich Regenerative		
			Energiesysteme	
Angebot im WS 20	24/25		Modultyp	
nur Prüfung			Wahl-Pflicht	
Prüfungsform			Prüfungsbewertung	
Klausur (min)			benotet	
Studienleistung			Empfohlenes Fachsemester	
1, SoSe			-	
Studentische Arbeit	tsleistung		Frequenz	
Gesamt: 150 Stunde	n; davon Präsenz: 60	Stunden; davon	jährlich	
Selbststudium: 90 St	unden			
SWS	LP (ECTS)	Dozent/in	Prüfer/in	
2 V + 1 Ü + 1 L	5 LP		Hanke-Rauschenbach	
Schwerpunkt / Mic	ro-Degree	Bei Seminar: Se	mesterthema (dt/en)	
keine				
Organisationseinheit		Modulverantwo	Modulverantwortlicher	
Institut für Elektrisch	ne Energiesysteme/IfE	S Hanke-Rauschen	Hanke-Rauschenbach	
		•		

Webseite

http://www.ifes.uni-hannover.de/ees

Qualifikationsziele

Die Teilnehmerinnen und Teilnehmer der Veranstaltung sind in der Lage Simulationsstudien zur Bewertung von Speicheranwendungen durchzuführen. Ferner sind Sie mit den methodischen Ansätzen zur anwendungsspezifischen Speicherauswahl und Dimensionierung vertraut und können diese entsprechend anwenden. Darüber hinaus verfügen die Teilnehmerinnen und Teilnehmer über einen umfassenden Überblick zu Lithium-Ionen-Akkumulatoren und sind mit deren Betriebsführung, Schutz und allen sicherheitstrelevanten Aspekten vertraut.

Inhalt

Simulation komplexer Lastgänge (Problemformulierung als Zustandsautomat, numerische Behandlung); Methodisches Vorgehen bei der Gestaltung und Auslegung von Speichersystemen (Systeme ohne zuverlässige Infrastruktur, Systeme mit zuverlässiger Infrastruktur, Betrachtung von Dualspeichern); Lithium-Ionen-Akkumulatoren (Aufbau und Funktionsprinzip, Materialien, Sicherheit von Li-Ionen-Zellen); Batteriesystemtechnik (Ladeverfahren, Zustandsbestimmung)

$Teilnahme vor aussetzungen\ und\ -empfehlungen$

keine

Literatur

- M. Sterner, I. Stadler: Energiespeicher Bedarf, Technologien, Integration, Springer-Verlag, Berlin 2014
- R. Korthauer: Handbuch Lithium-Ionen-Batterien, Springer-Verlag, Berlin Heidelberg 2013
- B. Scrosati, K. M. Abraham, W. A. van Schalkwijk, J. Hassoun: Lithium Batteries: Advanced Technologies and Applications, John Wiley & Sons, 2013
- A. Jossen, W. Weydanz: Moderne Akkumulatoren richtig einsetzen, Reichardt Verlag, Untermeitingen 2006

Weitere Angaben

Titel bis SoSe 2022: Energiespeicher II mit Laborübung als Studienleistung mit Laborübung als Studienleistung

Diese Veranstaltung umfasst eine Studienleistung in Form eines Laborversuchs für den 1 LP (siehe

Stand: 19.09.2024

Bemerkungen) angerechnet wird. Die Terminabstimmung erfolgt während des Semesters.

Elektrische Energ	giespeichersystem	Sprache Deutsch	
Modultitel englisch Electrical energy storage systems			Kompetenzbereich Kompetenzbereich Regenerative Energiesysteme
Angebot im WS 2024 Vorlesung und Prüfun			Modultyp Wahl-Pflicht
Prüfungsform Klausur (90 min)			Prüfungsbewertung benotet
Studienleistung 1, WiSe			Empfohlenes Fachsemester -
Studentische Arbeits Gesamt: 150 Stunden Selbststudium: 75 Stu	davon Präsenz: 75 Stur	nden; davon	Frequenz jährlich
SWS	LP (ECTS)	Dozent/in	Prüfer/in
2 V + 2 Ü + 1 L	5 LP	Hanke-Rauschenbach	
Schwerpunkt / Micro-Degree keine		Bei Seminar: Seme	sterthema (dt/en)
Organisationseinheit Institut für Elektrische Energiesysteme, FG Elektrische Energiespeichersysteme		Modulverantwortl i Bensmann	cher

Webseite

http://www.ifes.uni-hannover.de/ees.html

Qualifikationsziele

Die Teilnehmerinnen und Teilnehmer der Veranstaltung verfügen über einen profunden Überblick über verschiedene Speichertechnologien. Sie kennen alle nötigen Kenngrößen zum Vergleich der Technologien untereinander. Für jede Technologie sind die Teilnehmerinnen und Teilnehmer mit dem Aufbau, dem Funktionsprinzip, technischen Realisierungen und der groben Kostenstruktur vertraut. Ferner sind sie in der Lage das Betriebsverhalten des jeweiligen Speichers mit Hilfe eines Minimalmodells zu beschreiben. Darüber hinaus sind die Teilnehmerinnen und Teilnehmer mit den typischen Anwendungsfeldern für Speicher vertraut und kennen jeweils die Anforderungen und die typisch eingesetzten Speichertechnologien.

Inhalt

Einleitung und Übersicht (Klassifikation, Kenngrößen);

Speicherung in Form von elektrischer und magnetischer Feldenergie (Superkondensatoren, Supraleitende Spulen);

Speicherung in Form von mechanischer Energie (Pumpspeicher, Druckluftspeicher, Schwungradspeicher);

Speicherung in Form von chemischer Energie (Akkumulatoren, Redoxflow-Speicher, Wasserelektrolyse und darauf aufbauende Speicher-/ Nutzungspfade);

Speicherung in Form von thermischer Energie;

Einsatzfelder, Anforderungen und eingesetzte Speichertechnologien (tragbare Kleingeräte, Traktion, stationäre Energieversorgung)

Stand: 19.09.2024

Teilnahmevoraussetzungen und -empfehlungen

keine besonderen Vorkenntnisse nötig

Literatur

M. Sterner, I. Stadler: Energiespeicher – Bedarf, Technologien, Integration, Springer-Verlag, Berlin 2014

A. Hauer, J. Quinnell, E. Lävemann: Energy Storage Technologies - Characteristics, Comparison, and Synergies, in: Transition to Renewable Energy Systems, ed. D. Stolten, Wiley-VCH, Weinheim 2013

VDI-Bericht Band 2058: Elektrische Energiespeicher. Schlüsseltechnologie für energieeffiziente Anwendungen, VDI-Verlag, Düsseldorf, 2009

Weitere Angaben

Titel bis SoSe 2022: Energiespeicher I mit Laborübung als Studienleistung mit Laborübung als Studienleistung

Diese Veranstaltung umfasst eine Studienleistung in Form eines Laborversuchs für den 1 LP (siehe Bemerkungen) angerechnet wird. Die Terminabstimmung erfolgt während des Semesters.

Elektrische Ener	gieversorgung	I	Sprache Deutsch	
Modultitel englisch	c l		Kompetenzbereich	
Electric Power System	51		Kompetenzbereich Regenerative Energiesysteme	
Angebot im WS 202	4/25		Modultyp	
Vorlesung und Prüfun	g		Wahl-Pflicht	
Prüfungsform			Prüfungsbewertung	
Klausur (100 min)			benotet	
Studienleistung			Empfohlenes Fachsemester	
1, WiSe			-	
Studentische Arbeits	leistung		Frequenz	
Gesamt: 150 Stunden	; davon Präsenz: 60	Stunden; davon	jährlich	
Selbststudium: 90 Stu	nden			
SWS	LP (ECTS)	Dozent/in	Prüfer/in	
2 V + 1 Ü + 1 L 5 LP Hofmann			Hofmann	
Schwerpunkt / Micro-Degree keine		Bei Seminar: Se	mesterthema (dt/en)	
Organisationseinheit		Modulverantwo	Modulverantwortlicher	
Institut für Elektrische Energiesysteme/IfES		S IEE	IEE	

Webseite

http://www.iee.uni-hannover.de/

Qualifikationsziele

Die Studierenden erlangen eine Vertiefung ihres Wissens in Bezug auf den Aufbau und die Wirkungsweise von elektrischen Energiesystemen und deren Betriebsmitteln. Nach erfolgreichem Abschluss des Moduls können die Studierenden:

- symmetrische und unsymmetrische Drehstromsysteme und deren Betriebsmittel (Generatoren, Motoren, Ersatznetze, Leitungen, Transformatoren, Drosselspulen, Kondensatoren) mathematisch beschreiben
- die Methode der Symmetrischen Komponenten zur Überführung symmetrischer Drehstromsysteme in drei Einphasensysteme auf elektrische Energieversorgungssysteme anwenden
- die Ersatzschaltungen der Betriebsmittel in Symmetrischen Komponenten beschreiben, parametrieren und anwenden
- das Verfahren zur Berechnung von symmetrischen und unsymmetrischen Quer- und Längsfehlern anwenden

Inhalt

Mathematische Beschreibung des symmetrischen und unsymmetrischen Drehstromsystems. Methode der Symmetrischen Komponenten zur Überführung symmetrischer Drehstromsysteme in drei Einphasensysteme. Kennenlernen der Ersatzschaltungen der Betriebsmittel in Symmetrischen Komponenten. Maßnahmen zur Komponenten und zur Kurzschlussstrombegrenzung. Berechnung von symmetrischen und unsymmetrischen Quer- und Längsfehlern.

Vorlesungsinhalte:

- 1. Einführung, Zeigerdarstellung, Symmetrisches Drehstromsystem, Strangersatzschaltung
- 2. Unsymmetrisches Drehstromsystem, Symmetrische Komponenten (SK)
- 3. Generatoren

- 4. Motoren und Ersatznetze
- 5. Transformatoren
- 6. Leitungen
- 7. Drosselspulen, Kondensatoren, Kompensation
- 8. Kurzschlussverhältnisse
- 9. Symmetrische und unsymmetrische Querfehler
- 10. Symmetrische und unsymmetrische Längsfehler

keine

Literatur

Hofmann, Lutz: Elektrische Energieversorgung Band 1: Grundlagen, Systemaufbau und Methoden. Berlin, De Gruyter Oldenbourg, 2019.

Stand: 19.09.2024

Hofmann, Lutz: Elektrische Energieversorgung Band 2: Betriebsmittel und ihre quasistationäre Modellierung. Berlin, De Gruyter Oldenbourg, 2019.

Hofmann, Lutz: Elektrische Energieversorgung Band 3: Systemverhalten und Berechnung von Drehstromsystemen. Berlin, De Gruyter Oldenbourg, 2019.

Weitere Angaben

mit Laborübung als Studienleistung

Die Studienleistung besteht aus Kleingruppenübungen, die den Lehrinhalt durch praxisrelevante Beispielaufgaben weiter vertiefen. Die Studienleistung gilt nach dem Bestehen einer Prüfung im ILIAS-System, die im Rahmen der Kleingruppenübung stattfindet, als bestanden.

Elektrische Ene	ergieversorgung	II	Sprache	
	5 5 5		Deutsch	
Modultitel englisch	n		Kompetenzbereich	
Electric Power Syste	ms II		Kompetenzbereich Regenerative	
			Energiesysteme	
Angebot im WS 20)24/25		Modultyp	
nur Prüfung			Wahl-Pflicht	
Prüfungsform			Prüfungsbewertung	
mündl. Prüfung (MF	P)		benotet	
Studienleistung			Empfohlenes Fachsemester	
1, SoSe			-	
Studentische Arbei	tsleistung		Frequenz	
Gesamt: 150 Stunde	en; davon Präsenz: 60	Stunden; davon	jährlich	
Selbststudium: 90 S	tunden			
SWS	LP (ECTS)	Dozent/in	Prüfer/in	
2 V + 1 Ü + 1 L	5 LP	Hofmann		
Schwerpunkt / Micro-Degree keine		Bei Seminar: Se	mesterthema (dt/en)	
Organisationseinheit		Modulverantwo	Modulverantwortlicher	
-	he Energiesysteme/lfE	S IEE	IEE	

Webseite

http://www.iee.uni-hannover.de/

Qualifikationsziele

Die Studierenden erlangen eine Vertiefung ihres Wissens in Bezug auf das Zusammenwirken der Betriebsmittel in elektrischen Energiesystemen. Nach erfolgreichem Abschluss des Moduls können die Studierenden:

- die verschiedenen Arten der Sternpunktbehandlung beschreiben und charakteristische Erd(kurz)schlussgrößen berechnen und geeignete Näherungsverfahren anwenden
- die thermischen und mechanischen Beanspruchung bei Kurzschlüssen bestimmen und die Betriebsmittel entsprechend auslegen
- Kenntnisse zur Aufrechterhaltung des stabilen Betriebes vorweisen und Verfahren zur Analyse der statischen und transienten Stabilität für das Einmaschinen-Problem anwenden
- die Wirkung der Primär- und Sekundärregelung und der Netzregelung in Verbundbetrieb beschreiben und mathematisch beschreiben
- die prinzipiellen Wirkungsweisen von verschiedenen Netzschutzeinrichtungen, die Möglichkeiten der Leistungsflusssteuerung und die Entstehung von zeitweiligen Überspannungen erklären

Inhalt

Kennenlernen der verschiedenen Arten der Sternpunktbehandlung. Berechnung der thermischen und mechanischen Kurzschlussbeanspruchungen. Analyse der statischen und transienten Stabilität. Kennenlernen der Primär- und Sekundärregelung und der Netzregelung in Verbundbetrieb, der prinzipiellen Wirkungsweisen von Netzschutzeinrichtungen, der Möglichkeiten der Leistungsflusssteuerung. Entstehung von zeitweiligen Überspannungen.

Vorlesungsinhalte:

1. Sternpunktbehandlung

- 2. Thermische Kurzschlussfestigkeit
- 3. Mechanische Kurzschlussfestigkeit
- 4. Statische Stabilität
- 5. Transiente Stabilität
- 6. Netzregelung: Primärregelung
- 7. Netzregelung: Sekundärregelung
- 8. Netzregelung im Verbundbetrieb
- 9. Netzschutz
- 10. Leistungsflusssteuerung
- 11. Zeitweilige Überspannungen

keine

Literatur

Hofmann, Lutz: Elektrische Energieversorgung Band 1: Grundlagen, Systemaufbau und Methoden. Berlin, De Gruyter Oldenbourg, 2019.

Stand: 19.09.2024

Hofmann, Lutz: Elektrische Energieversorgung Band 2: Betriebsmittel und ihre quasistationäre Modellierung. Berlin, De Gruyter Oldenbourg, 2019.

Hofmann, Lutz: Elektrische Energieversorgung Band 3: Systemverhalten und Berechnung von Drehstromsystemen. Berlin, De Gruyter Oldenbourg, 2019.

Weitere Angaben

mit Laborübung als Studienleistung

Die Studienleistung besteht aus Kleingruppenübungen, die den Lehrinhalt durch praxisrelevante Beispielaufgaben weiter vertiefen.

Hochspannungstechnik I			Sprache Deutsch
Modultitel englisch High Voltage Techniqu	e l	Kompetenzbereich Kompetenzbereich Regenerative Energiesysteme	
Angebot im WS 2024 nur Prüfung	1/25	Modultyp Wahl-Pflicht	
Prüfungsform Klausur (120 min)		Prüfungsbewertung benotet	
Studienleistung \		Empfohlenes Fachsemester -	
Studentische Arbeitsl Workload: Gesamt 150	_	Selbstlernen 94 h	Frequenz jährlich
SWS	LP (ECTS)	Dozent/in	Prüfer/in
2 V + 1 Ü + 1 L	5 LP		Werle
Schwerpunkt / Micro-Degree keine		Bei Seminar: Ser	mesterthema (dt/en)
Organisationseinheit Institut für Elektrische Energiesysteme		Modulverantwor Werle	rtlicher

Webseite

http://www.si.uni-hannover.de/

Qualifikationsziele

Die Studierenden erlangen Grundkenntnisse der Hochspannungserzeugung und -messung sowie zu den Themen elektrostatisches Feld und Durchschlag in Isolierstoffen.

Inhalt

Einführung in die Hochspannungstechnik

Erzeugung hoher Wechselspannungen

Erzeugung hoher Gleichspannungen

Erzeugung hoher Stoßspannungen

Messung hoher Wechselspannungen

Messung hoher Gleichspannungen

Messung hoher Stoßspannungen

Grundlagen des elektrostatischen Feldes

Elektrische Felder in Isolierstoffen

Durchschlagmechanismen

Durchschlag in Gasen

Durchschlag in flüssigen und festen Isolierstoffen.

Teilnahmevoraussetzungen und -empfehlungen

Grundlagen Elektrotechnik

Grundlagen Physik.

Literatur

M. Beyer, W. Boeck, K. Möller, W. Zaengl: Hochspannungstechnikl; Springer Verlag

G. Hilgarth: Hochspannungstechnik; Teubner Verlag

D. Kind, K. Feser: Hochspannungsversuchstechnik; Vieweg Verlag

H. Ryan: High Voltage Engineering and testing; IEE Power and Energy series 32.

Weitere Angaben

ab SoSe 2021 jährlich im SoSe angeboten

mit Laborübung als Studienleistung

Für PO2017/5LP ist über den 1L-Laboranteil eine Studienleistung nachzuweisen.

Hochspannungsvorführung in der Hochspannungshalle.

Hochspannungst	echnik II		Sprache
			Deutsch
Modultitel englisch		Kompetenzbereich	
High Voltage Techniqu	e II		Kompetenzbereich Regenerative
			Energiesysteme
Angebot im WS 2024	1/25		Modultyp
Vorlesung und Prüfung	9		Wahl-Pflicht
Prüfungsform			Prüfungsbewertung
mündl. Prüfung (MP)			benotet
Studienleistung			Empfohlenes Fachsemester
1, WiSe			-
Studentische Arbeits	eistung		Frequenz
Gesamt: 150 Stunden;	davon Präsenz: 60 Stur	nden; davon	jährlich
Selbststudium: 90 Stu	nden		
SWS	LP (ECTS)	Dozent/in	Prüfer/in
2 V + 1 Ü + 1 L	5 LP	Werle	
Schwerpunkt / Micro-Degree		Bei Seminar: Semesterthema (dt/en)	
keine			
Organisationseinheit		Modulverantwortlicher	
Institut für Elektrische Energiesysteme/IfES		IEH	

Webseite

http://www.si.uni-hannover.de

Qualifikationsziele

Die Studierende erlangen Wissen über Leitungs- und Durchschlagmechanismen in Flüssigkeiten und festen Isolierstoffen, über Teilentladungsverhalten und Teilentladungsmesstechnik sowie über elektrische Beanspruchungen in kombinierten Isolierssystemen. Die Studierenden beherrschen die Auslegung von Isolierystemen sowie die Beurteilung der Qualität von Isoliersystemen in Hochspannungsgeräten.

Inhalt

Beschreibung der Leitungs- und Durchschlagmechanismen in flüssigen und festen Isolierstoffen bei Gleich- und Wechselspannung;

Beschreibung des Teilentladungsverhaltens von Isolierstoffen;

Beschreibung der Eigenschaften von flüssigen und festen Isolierstoffen;

Teilnahmevoraussetzungen und -empfehlungen

Hochspannungstechnik I

Literatur

M. Beyer, W. Boeck, K. Möller, W. Zaengl: Hochspannungstechnik, Springer Verlag Berlin, ISBN 3-540-16014-0;

M. Kahle: Elektrische Isoliertechnik, Springer Verlag Berlin, ISBN 3-540-19369-3;

A. Küchler: Hochspannungstechnik, Springer Verlag Berlin, ISBN 3-540-21411-9;

Weitere Angaben

ab WS 21/22 Frequenzänderung auf jährlich im WS

mit Laborübung als Studienleistung

Nutzung vor	n Solarenergie		Sprache
3	J		Deutsch
Modultitel englisch			Kompetenzbereich
Use of Solar Ener	rgy		Kompetenzbereich Regenerative
			Energiesysteme
Angebot im WS	2024/25		Modultyp
Vorlesung und Pi	rüfung		Wahl-Pflicht
Prüfungsform			Prüfungsbewertung
Klausur (90 min)			benotet
Studienleistung			Empfohlenes Fachsemester
\			-
Studentische Ar	beitsleistung		Frequenz
150 h			jedes Semester
SWS	LP (ECTS)	Dozent/in	Prüfer/in
2 V + 2 Ü	5 LP	Kleiss	Kleiss
Schwerpunkt / Micro-Degree		Bei Seminar: Semesterthema (dt/en)	
keine			
Organisationseinheit		Modulverantwortlicher	
Institut für Elekti	roprozesstechnik	Kleiss	
1A/-116-		-	<u> </u>

Webseite

http://www.etp.uni-hannover.de

Qualifikationsziele

Die Studierenden sollen die Möglichkeiten und die Bedingungen der Nutzung solarer Energien erkennen und die verschiedenen Verfahren für die Anwendung auslegen können.

Inhalt

Im Wintersemester: Grundlagen und Motivatin zur Nutzung regenerativer Energieträger (Definitionen, Probleme), Solare Strahlung (Sonnenspektrum, Atmosphäreneinflüsse), Solarthermie (Grundlagen, Umweltaspekte, Wirtschaftlichkeit), Windenergie (Grundlagen, Umweltaspekte, Offshore.

Im Sommersemester: Photovoltaik Grundlagen, Photovoltaik Systemtechnik und Betrieb, Systemtechnik, Wirtschaftlichkeit und Fragen der Netzanbindung

Teilnahmevoraussetzungen und -empfehlungen

Keine

Literatur

Keine

Weitere Angaben

Die Vorlesung geht über zwei Semester und setzt sich aus den früheren Lehrveranstaltungen 'Nutzung von Solarenergie I' und 'Nutzung von Solarenergie II' zusammen.

Die Vorlesung geht über zwei Semester und setzt sich aus den früheren Lehrveranstaltungen 'Nutzung von Solarenergie I' und 'Nutzung von Solarenergie II' zusammen.

Windenergi	etechnik I		Sprache
3			Englisch
Modultitel englisch			Kompetenzbereich
Wind Energy Te	chnology l		Kompetenzbereich Regenerative
			Energiesysteme
Angebot im W	S 2024/25		Modultyp
Vorlesung und F	Prüfung		Wahl-Pflicht
Prüfungsform			Prüfungsbewertung
mündl. Prüfung	(MP)		benotet
Studienleistun	g		Empfohlenes Fachsemester
1, WiSe/SoSe			-
Studentische A	rbeitsleistung		Frequenz
150 h			jedes Semester
SWS	LP (ECTS)	Dozent/in	Prüfer/in
2 V + 2 Ü	5 LP	Reuter	Reuter
Schwerpunkt / Micro-Degree		Bei Seminar: Se	mesterthema (dt/en)
keine			
Organisationseinheit		Modulverantwortlicher	
Institut für Windenergiesysteme		Reuter	
		•	

Webseite

https://www.iwes.uni-hannover.de

Qualifikationsziele

This module is the first of two modules that introduce to the foundations of design, planning and operation of wind turbines. After successful completion of the module students can

- explicate the components of a wind turbine and explain their functionalities,
- explain the physics of the wind & calculate the energy yield for given boundary conditions,
- conduct an aerodynamic design of rotor blades for optimum conditions,
- utilize and explain the blade element method and the steady-state blade element momentum theory,
- compare the behavior of fast and slow running turbines,
- judge the significance of different loss types for different turbine configurations,
- compile a power curve,
- explicate different control strategies for power limitation,
- judge scaling boundaries on the basis of the similarity theory,
- explicate advantages and deficiencies of different drive train concepts,
- explain the requirements of turbine certification,
- describe different support structures of offshore wind turbines and explain their functionalities.

Inhalt

- Introduction and history of wind turbine design
- Wind physics and energy yield assessment
- Aerodynamic, mechanical and electrical design of wind turbines,
- Design of wind turbines according to Betz and Schmitz theory,
- Characteristic diagrams and partial load behavior,
- Compilation of a power curve,
- Control strategies for power limitation,

- Scaling and similarity theory
- Offshore wind energy
- Modellgesetze und Ähnlichkeitsregeln
- Einige Aspekte der Offshore-Windenergie

keine

Literatur

- Gasch, R.; Twele, J.: Windkraftanlagen - Grundlagen, Entwurf, Planung und Betrieb, 8. Auflage, Vieweg + Teubner Verlag Wiesbaden, 2013

Stand: 19.09.2024

- Weitere Literatur wird in der Lehrveranstaltung angegeben
- Weitere Literatur wird in der Lehrveranstaltung angegeben

Weitere Angaben

mit Hausübung als Studienleistung

Die Studienleistung ist eine unbenotete Hausübung.

Das Modul wird im Sommersmester nur auf Englisch mit dem Modultitel "Wind Energy Technology I" abgeboten.

"Windenergietechnik I" findet nur im WiSe statt!

Excursion to a wind turbine manufacturer; in winter semester the course is given in German; lecture slides are in English. in summer semester the course is given in English.

1.8. Kompetenzbereich Transformation industrieller Prozesse

Englischer Titel: Transformation of industrial processes

Information zum : 25 LP, WP

Brennstoffzellen	und Wasserelekti	Sprache Deutsch	
Modultitel englisch Fuel Cells and Water El	ectrolysis	Kompetenzbereich Kompetenzbereich Transformation industrieller Prozesse	
Angebot im WS 2024 nur Prüfung	1/25		Modultyp Wahl-Pflicht
Prüfungsform Klausur (min)			Prüfungsbewertung benotet
Studienleistung Keine			Empfohlenes Fachsemester
Studentische Arbeitsl Gesamt: 150 Stunden; Selbststudium: 75 Stur	davon Präsenz: 75 Stur	nden; davon	Frequenz jährlich
SWS	LP (ECTS)	Dozent/in	Prüfer/in
3 V + 2 Ü	5 LP		Hanke-Rauschenbach
Schwerpunkt / Micro-Degree keine		Bei Seminar: Se	mesterthema (dt/en)
Organisationseinheit Institut für Elektrische Energiesysteme/IfES, IFT		Modulverantwortlicher Hanke-Rauschenbach, Kabelac	

Webseite

http://www.ifes.uni-hannover.de/ees

Qualifikationsziele

Das Modul vermittelt ein grundlegendes Verständnis der physikalischen Vorgänge in elektrochemischen Energiewandlern, insbesondere der Brennstoffzelle der Wasser-Elektrolyse. Diese beiden Energiewandler spielen eine zentrale Rolle in zukünftigen Energieversorgungsszenarien.

Nach erfolgreichem Abschluss dieses Moduls sind die Studierenden in der Lage:

- das zugrundeliegende physikalische Prinzip der elektrochemischen Energiewandlung aus eigenem Verständnis heraus zu erläutern.
- die wichtigsten Elemente einer elektrochemischen Zelle sowie deren Funktion qualitativ und quantitativ zu beschreiben.
- die notwendigen Hilfssysteme zu benennen und zu erläutern, die Kennlinie einer Brennstoffzelle bzw. eines Elektrolyseurs zu berechnen und zu interpretieren.
- die möglichen Verfahren zur Wasserelektrolyse zu beschreiben.

Inhalt

Modulinhalte:

- Im Rahmen dieses Moduls erstellen die Studierenden ein einfaches Programm zur Modellierung einer Brennstoffzelle
- Einführung und GrundlagenPotentialfeld in der Brennstoffzelle
- Stationäres Betriebsverhalten
- Thermodynamik und Elektrochemie
- Experimentelle Methoden in der Brennstoffzellenforschung

- Brennstoffzellensysteme und deren Anwendung
- Wasserelektrolyse (Grundlagen und Varianten)
- Wasserstoffwirtschaft

Thermodynamik, Transportprozesse in der Verfahrenstechnik

Literatur

R. O'Hayre/S. Cha/W. Colella/F. Prinz: Fuel Cell Fundamentals 3. ed. New York: Wiley & Sons, 2016

W. Vielstich et al.: Handbook of Fuel Cells. New York: Wiley & Sons, 2003

A. Bard, L.R. Faulkner: Electrochemical Methods. Fundamentals and Applications 2. ed. New York: Wiley & Sons, 2001

Stand: 19.09.2024

P. Kurzweil: Brennstoffzellentechnik: Grundlagen, Komponenten, Systeme, Anwendungen 2. ed.

Wiesbaden: Springer Vieweg, 2013

Weitere Angaben

Elektrothermisc	he Verfahren		Sprache	
			Deutsch	
Modultitel englisch			Kompetenzbereich	
Electrothermal Proces	sses		Kompetenzbereich	
			Transformation industrieller	
			Prozesse	
Angebot im WS 202	4/25		Modultyp	
Vorlesung und Prüfur	ıg		Wahl-Pflicht	
Prüfungsform			Prüfungsbewertung	
mündl. Prüfung (MP)			benotet	
Studienleistung			Empfohlenes Fachsemester	
			-	
Studentische Arbeits	sleistung		Frequenz	
Gesamt: 150 Stunden	; davon Präsenz: 60 S	tunden; davon	jährlich	
Selbststudium: 90 Stu	ınden			
SWS	LP (ECTS)	Dozent/in	Prüfer/in	
2 V + 1 Ü + 1 L	5 LP	Baake		
Schwerpunkt / Micro	o-Degree	Bei Seminar: Se	mesterthema (dt/en)	
keine				
Organisationseinheit		Modulverantwo	rtlicher	
Institut für Elektrothe	rmische Prozesstechn	iik ETP	ETP	
		•		

Webseite

http://www.etp.uni-hannover.de

Qualifikationsziele

Die Studierenden sollen die unterschiedlichen Verfahren der elektrothermischen Prozesstechnik verstehen und qualitative und quantitave Lösungsmöglichkeiten für Probleme der Praxis erarbeiten können.

Inhalt

Energiewirtschaftliche Bedeutung, Eigenschaften und Einsatzbereiche, thermische und elektrotechnische Grundlagen des Ofenbaus, Umwandlung elektrischer in thermische Energie mit Berechnungsbeispielen für induktive, dielektrische und konduktive Erwärmung, Widerstands- und Lichtbogenerwärmung

Teilnahmevoraussetzungen und -empfehlungen

keine

Literatur

Weitere Angaben

mit Laborübung als Studienleistung

Für PO2017/5LP ist über den 1L-Laboranteil eine Studienleistung nachzuweisen.

Diese Lehrveranstaltung trägt zu den folgenden Zielen für nachhaltige Entwicklung (Sustainable

Development Goals, SDGs) bei:

SDG 7: Bezahlbare und saubere Energie

SDG 9: Industrie, Innovation und Infrastruktur

SDG 13: Maßnahmen zum Klimaschutz

Gemisch- und	Prozessthermod	Sprache	
		•	Deutsch
Modultitel engliscl	h	Kompetenzbereich	
Thermodynamics of	phase equilibria and	separation technology	Kompetenzbereich
			Transformation industrieller
			Prozesse
Angebot im WS 20	024/25		Modultyp
Vorlesung und Prüfi	ung		Wahl-Pflicht
Prüfungsform			Prüfungsbewertung
mündl. Prüfung (MF	P)		benotet
Studienleistung			Empfohlenes Fachsemester
\			-
Studentische Arbei	itsleistung		Frequenz
150 h			jährlich
SWS	LP (ECTS)	Dozent/in	Prüfer/in
2 V + 2 Ü + 1 L	5 LP	Kabelac	Kabelac
Schwerpunkt / Micro-Degree keine		Bei Seminar: Sei	mesterthema (dt/en)
Organisationseinheit		Modulverantwortlicher	
		N.N.	

Webseite

http://www.ift.uni-hannover.de

Qualifikationsziele

Diese Veranstaltung führt in die Grundlagen der Phasen- und der Reaktionsgleichgewichte von fluiden Gemischen ein, die grundlegend für viele Prozesse der Energie- und Verfahrenstechnik sind. Nach erfolgreichem Absolvieren des Moduls sind die Studierenden in der Lage:

- die Basis für Gemisch-thermodynamische Berechnungen in eigenen Worten zu erläutern.
- einige wichtige Berechnungsmodelle zu beschreiben.
- anhand von Phasendiagramme für Komponentengemische Trennverfahren in erster Näherung auszulegen.
- das passendste Trennverfahren für eine Trennaufgabe auszuwählen.

Inhalt

Modulinhalte:

- Phasendiagramme
- Kanonische Zustandsgleichungen
- Chemisches Potenzial, Fugazitäts-und Aktivitätskoeffizient
- Destillation und Rektifikation
- Absorption, Gaswäsche und Adsorption
- Extraktion und Membran-Trennverfahren

Teilnahmevoraussetzungen und -empfehlungen

Thermodynamik I und II

Literatur

Baehr, H.D., Kabelac, S.: Thermodynamik: Grundlagen und Anwendungen; 16. Aufl. Berlin: Springer 2016. Stephan, P., Schaber, K., Stephan K., Mayinger, F.: Thermodynamik-Grundlagen und technische

Anwendungen; 15. Aufl. Berlin: Springer 2013.

Sattler, K.: Thermische Trennverfahren: Grundlagen, Auslegung, Apparate; Weinheim: Wiley-VCH 2001. Gmehling, J., Kolbe, B., Kleiber, M., Rarey, J.: Chemical Thermodynamics for Process Simulation; Weinheim: Wiley-VCH 2012.

Stand: 19.09.2024

Weitere Angaben

Ehemaliger Titel (bis SS 2017): Thermodynamik der Gemische

mit Laborübung als Studienleistung mit Laborübung als Studienleistung

Industrielle Elekt	rowärme		Sprache Deutsch
Modultitel englisch Industrial Applications	of Electroheat	Kompetenzbereich Kompetenzbereich Transformation industrieller Prozesse	
Angebot im WS 2024 nur Prüfung	1/25		Modultyp Wahl-Pflicht
Prüfungsform mündl. Prüfung (MP)			Prüfungsbewertung benotet
Studienleistung 1, SoSe			Empfohlenes Fachsemester
Studentische Arbeitsl Gesamt: 150 Stunden; Selbststudium: 90 Stur	davon Präsenz: 60 Stur	nden; davon	Frequenz jährlich
SWS	LP (ECTS)	Dozent/in	Prüfer/in
2 V + 1 Ü + 1 L	5 LP	Baake	
Schwerpunkt / Micro-Degree keine		Bei Seminar: Se	mesterthema (dt/en)
Organisationseinheit Institut für Elektrothermische Prozesstechnik		Modulverantwortlicher ETP	

Webseite

http://www.etp.uni-hannover.de

Qualifikationsziele

Die Studierenden sollen die praxisnahe Anwendung von elektrothermischen Verfahren verstehen und gezielt Lösungen für neue Verfahren zur Anwendung von elektrothermischen Prozessen entwickeln können.

Inhalt

Elektrowärmeverfahren in der industriellen Anwendung, Widerstandserwärmung, induktive Erwärmung, Lichtbogenerwärmung und Sonderverfahren der elektrischen Erwärmung, Berechnungsmethoden

Teilnahmevoraussetzungen und -empfehlungen

keine

Literatur

Weitere Angaben

mit Laborübung als Studienleistung

Für PO2017/5LP ist über den 1L-Laboranteil eine Studienleistung nachzuweisen.

Diese Lehrveranstaltung trägt zu den folgenden Zielen für nachhaltige Entwicklung (Sustainable

Development Goals, SDGs) bei:

SDG 7: Bezahlbare und saubere Energie

SDG 9: Industrie, Innovation und Infrastruktur

SDG 13: Maßnahmen zum Klimaschutz

Nachhaltige Ve	erbrennungstech	nik	Sprache	
			Deutsch	
Modultitel englisc	h		Kompetenzbereich	
Combustion Techno	logy		Kompetenzbereich	
			Transformation industrieller	
			Prozesse	
Angebot im WS 20	024/25		Modultyp	
nur Prüfung			Wahl-Pflicht	
Prüfungsform			Prüfungsbewertung	
Klausur (90 min)			benotet	
Studienleistung			Empfohlenes Fachsemester	
			-	
Studentische Arbeitsleistung			Frequenz	
Gesamt: 150 Stunden; davon Präsenz: 60 Stunden; davon			jährlich	
Selbststudium: 90 S	tunden			
SWS	LP (ECTS) Dozent/in		Prüfer/in	
2 V + 1 Ü + 1 L	5 LP		Dinkelacker	
Schwerpunkt / Micro-Degree		Bei Seminar: Se	Bei Seminar: Semesterthema (dt/en)	
keine				
Organisationseinheit		Modulverantwo	Modulverantwortlicher	
Institut für Techniso	he Verbrennung	Dinkelacker	Dinkelacker	
\A/		•		

Webseite

http://www.itv.uni-hannover.de

Qualifikationsziele

Das Modul vermittelt die Grundlagen der Verbrennungstechnik und ihre Anwendung.

Nach erfolgreicher Absolvierung des Moduls sind die Studierenden in der Lage,

- •verschiedene Verbrennungen zu unterscheiden und im Detail zu beschreiben,
- •Verbrennungsvorgänge zu bilanzieren,
- •typische Anwendungsbeispiele für unterschiedliche Verbrennungstypen zu erläutern,
- •Potentiale zur Reduzierung von Schadstoffemissionen aufzuzeigen und zu bewerten.

Inhalt

Inhalte:

- •Grundbegriffe, Grundlagen der Flammentypen und Flammenausbreitung
- •Stoffmengen-, Massen- und Energiebilanz
- Reaktionskinetik
- Zündprozesse
- Kennzahlen
- •Berechnungs- und Modellansätze
- Schadstoffbildung
- •Technische Anwendungen

Teilnahmevoraussetzungen und -empfehlungen

Empfohlen: Grundbegriffe der Thermodynamik

Literatur

Dinkelacker, Leipertz: Einführung in die Verbrennungstechnik

Joos: Technische Verbrennung

Warnatz, Maas, Dibble: Verbrennung

Turns: An Introduction to Combustion: Concepts and Application

Weitere Angaben

Titel bis SoSe 2023: "Verbrennungstechnik."

Zum Modul gehört die Teilnahme an einem Laborversuch.

Strömungsmech	anik		Sprache Deutsch	
Mandadata annical				
Modultitel englisch			Kompetenzbereich	
Fluid Dynamics			Kompetenzbereich	
			Transformation industrieller	
			Prozesse	
Angebot im WS 2024	1/25		Modultyp	
Vorlesung und Prüfung	9		Wahl-Pflicht	
Prüfungsform			Prüfungsbewertung	
Klausur (90 min)			benotet	
Studienleistung			Empfohlenes Fachsemester	
1			- 1	
Studentische Arbeitsleistung			Frequenz	
Gesamt: 150 Stunden;	davon Präsenz: 60	Stunden; davon	jährlich	
Selbststudium: 90 Stu	nden			
SWS	LP (ECTS)	Dozent/in	Prüfer/in	
2 V + 2 Ü	5 LP	Seume	Seume	
Schwerpunkt / Micro-Degree		Bei Seminar: Se	Bei Seminar: Semesterthema (dt/en)	
keine				
Organisationseinheit		Modulverantwo	Modulverantwortlicher	
Institut für Turbomaschinen und Fluid-		Seume		
Dynamik				
		.		

Webseite

http://www.tfd.uni-hannover.de/vorlesung.html

Qualifikationsziele

Nach erfolgreicher Absolvierung des Moduls sind die Studierenden in der Lage:

- einfache Strömungsphänomene zu beschreiben,
- die allgemeinen Gleichungen der Massen- und Impulserhaltung herzuleiten,
- die Bedeutung der einzelnen Terme der Navier-Stokes-Gleichungen zu diskutieren,
- für vereinfachte Anwendungsfälle der Strömungsmechanik die Strömungsgrößen zu lösen (inkompressibel und kompressibel).

Inhalt

Im Rahmen der Vorlesung werden Grundlagen der Strömungslehre vermittelt. Hierfür werden Strömungseigenschaften von Fluiden erläutert und die Grundgleichungen zur Beschreibung der Dynamik von Strömungen vorgestellt. Zunächst wird die inkompressible Strömungsmechanik behandelt, in deren Kontext die Hydrostatik sowie Hydrodynamik Lehrinhalte sind und die Grundgleichungen der Strömungsmechanik, wie etwa die Kontinuitätsgleichung sowie Bernoulli-Gleichung, werden hergeleitet. Durch die Anwendung der Grundgleichungen auf technisch relevante, interne und externe Strömungen wird den Studierenden das strömungsmechanische Verständnis in Bezug auf technische Problemstellungen vermittelt. In Hinblick auf aufbauende Vorlesungen wird eine Einleitung in die Gasdynamik gegeben.

Teilnahmevoraussetzungen und -empfehlungen

Thermodynamik, Technische Mechanik IV

Literatur

Oertel, H.; Böhle, M.; Reviol, T.: Grundlagen – Grundgleichungen – Lösungsmethoden– Softwarebeispiele. 6. Auflage, Vieweg + Teubner Verlag Wiesbaden 2011;

Stand: 19.09.2024

Zierep, J.; Bühler, K.: Grundlagen, Statik und Dynamik der Fluide. 7. Auflage, Teubner Verlag Wiesbaden 2008;

Young, D.F.: A brief introduction to fluid mechanics. 5. Auflage, Wiley Verlage Hoboken, NJ 2011; Pijush, K., Cohen, I.M.; Dowling, D.R.: Fluid mechanics, 5. Auflage, Academic Press Waltham, MA 2012. Bei vielen Titeln des Springer-Verlages gibt es im W-Lan der LUH unter www.springer.com eine Gratis Online-Version.

Weitere Angaben

Titel alt: Strömungsmechanik I mit Laborübung als Studienleistung Studienleistung ist AML A Keine

Thermodynamik II			Sprache Deutsch	
Modultitel englisch			Kompetenzbereich	
Thermodynamics II / Th	nermoLab		Kompetenzbereich Transformation industrieller	
			Prozesse	
Angebot im WS 2024/25 nur Prüfung			Modultyp Wahl-Pflicht	
Prüfungsform			Prüfungsbewertung	
Klausur (90 min)			benotet	
Studienleistung			Empfohlenes Fachsemester	
1, SoSe Studentische Arbeitsleistung			- Frequenz	
				Gesamt: 150 Stunden; davon Präsenz: 75 Stunden; davon
Selbststudium: 75 Stur	nden •			
SWS	LP (ECTS)	Dozent/in	Prüfer/in	
2 V + 2 Ü + 1 L	5 LP		Kabelac	
Schwerpunkt / Micro-Degree keine		Bei Seminar: Sei	Bei Seminar: Semesterthema (dt/en)	
Organisationseinheit		Modulverantwo	Modulverantwortlicher	
IFT		IFT	IFT	

Webseite

http://www.ift.uni-hannover.de

Qualifikationsziele

Nach erfolgreichem Abschluss dieses Moduls sind die Studierenden in der Lage:

- verschiedene Pfade zur Umwandlung von Primärenergie in Nutzenergie zu beschreiben.
- verschiedene technisch relevante Energiewandler wie Feuerungen, Brennstoffzellen, Gasturbinenanlagen und Dampfkraftwerke quantitativ zu bilanzieren und zu bewerten.
- die Umweltproblematik durch Verbrennung fossiler Brennstoffe zu beschreiben und Lösungen aufzuzeigen.
- die Bewertung der Umwandlungsfähigkeit von Energieformen durch den Exergiebegriff zu erweitern.
- die Bedeutung der Energiewandlung und der dazugehörigen Energietechnik für eine nachhaltige Energiewende zu beschreiben.

Durch das Labor werden Kompetenzen in der praktischen Handhabung von Energiewandlern im Labormaßstab erworben, sowie die Sozialkompetenz durch Gruppenarbeit gefördert.

Inhalt

Dieses Modul umfasst die Lehrveranstaltung Thermodynamik II und das dazugehörige Labor Thermolab. Das Modul rundet die im Modul "Thermodynamik I/Chemie" vermittelten Grundlagen der technischen Thermodynamik ab, indem die Hauptsätze der Thermodynamik auf verschiedene

Energiewandlungsprozesse angewendet werden. Dabei werden insbesondere nachhaltige

Energiewandlungsprozesse wie die Brennstoffzelle hervorgehoben. Es werden folgende Inhalte behandelt:

- Verbrennung und Brennstoffzelle
- Dampfkreisprozess, Stirling-Maschine und Gasturbinenanlage als Wärmekraftmaschine
- Das moderne Kraftwerk / CO2 Sequestrierung CC

- Strömungs- und Arbeitsprozesse
- Exergie und Anergie Wärmepumpe, Kältemaschine, Klimatechnik und Feuchte Luft

Thermodynamik I

Literatur

Baehr, H.D. und Kabelac, S.: Thermodynamik, 16. Aufl.; Berlin, Heidelberg: Springer-Verl., 2016 Stephan, P., Schaber, K., Stephan, K., Mayinger, F.: Thermodynamik - Grundlagen und technische Anwendungen (Band 1 & 2), 15. Aufl.; Berlin, Heidelberg: Springer-Verl., 2010

Stand: 19.09.2024

Moran, M. J.; Shapiro, H. M.; Boettner D. D. und Bailey, B. B.: Fundamentals of Engineering

Thermodynamics, 8th ed. Hoboken: Wiley, 2014

Kondepudi, D.: Modern Thermodynamics, 2nd ed.; Hoboken: Wiley, 2014

Weitere Angaben

Titel alt: Thermodynamik II / ThermoLab mit Laborübung (Thermolab) als Studienleistung 2 Labore als Studienleistung

Wärmepumpen und Kälteanlagen			Sprache
	Deutsch		
Modultitel englisch			Kompetenzbereich
Heat pumps and refrig	geration cycles		Kompetenzbereich
			Transformation industrieller
	Prozesse		
Angebot im WS 2024/25			Modultyp
nur Prüfung			Wahl-Pflicht
Prüfungsform			Prüfungsbewertung
Klausur (min)			benotet
Studienleistung			Empfohlenes Fachsemester
1, WiSe			-
Studentische Arbeitsleistung			Frequenz
150 h			jährlich
SWS	/S LP (ECTS) Dozent/in		Prüfer/in
2 V + 1 Ü + 1 L	5 LP		Kabelac
Schwerpunkt / Micro-Degree keine		Bei Seminar: Semesterthema (dt/en)	
Organisationseinheit		Modulverantwor	rtlicher
IFT		Kabelac	

Webseite

_

Qualifikationsziele

Das Modul vermittelt Kenntnisse zu Kreisprozessen zur kontinuierlichen Kälteerzeugung sowie zur Bereitstellung von Wärme. Dazu werden verschiedene Wärmepumpen-Verfahren vorgestellt und im Detail erläutert.

Nach erfolgreichem Absolvieren des Moduls sind die Studierenden in der Lage,

- den Aufbau und die Funktionsweise verschiedener Maschinen zur Kälteerzeugung zu erläutern,
- Kreisprozesse der vorgestellten Kältemaschinen zu beschreiben,
- effizienzsteigernde Maßnahmen zu identifizieren,
- Anlagenkomponenten der Kältemaschinen und deren Zusammenwirken widerzugeben und
- die Umweltrelevanz verschiedener Kältemittel einzuordnen.

Inhalt

Modulinhalte

Grundaufgabe der Heiz- und Kältetechnik, Übersicht von Verfahren zur Kälteerzeugung, Grundlagen zu relevanten Kreisprozessen, Dampf-Kompressionskältemaschine, Bauarten und theoretische Grundlagen zu Kompressoren und Verdampfer, Kältemittel und Öl, Prinzip der Absorptionskältemaschine,

Tieftemperaturtechnik: Gasverflüssigung mit Linde- und Stirling-Prozess.

Weiterhin zwei Laboreinheiten, in welchen die Studierenden in Kleingruppen Verfahren zur Kältebereitstellung untersuchen.

Teilnahmevoraussetzungen und -empfehlungen

Thermodynamik I und Thermodynamik II

Literatur

Baehr, H.D. und Kabelac, S.: Thermodynamik, 16. Aufl.; Berlin, Heidelberg: Springer-Verl. 2016 Bonin, J.: Handbuch Wärmepumpen. 3. Aufl. Berlin: Beuth-Verlag 2017

Stand: 19.09.2024

Weitere Angaben

Titel alt: Kälteanlagen und Wärmepumpen mit Laborübung als Studienleistung Vorlesungsbegleitendes Labor

Wärmeübertragung			Sprache	
•	5 5	Deutsch		
Modultitel englisch			Kompetenzbereich	
Heat Transfer			Kompetenzbereich	
			Transformation industrieller	
			Prozesse	
Angebot im WS 20)24/25		Modultyp	
Vorlesung und Prüft	ung		Wahl-Pflicht	
Prüfungsform			Prüfungsbewertung	
Klausur (90 min)			benotet	
Studienleistung			Empfohlenes Fachsemester	
1, WiSe			-	
Studentische Arbeitsleistung			Frequenz	
Gesamt: 150 Stunden; davon Präsenz: 60 Stunden; davon			jährlich	
Selbststudium: 90 S	tunden			
SWS	LP (ECTS) Dozent/in		Prüfer/in	
2 V + 1 Ü + 1 L	5 LP	Kabelac	Kabelac	
Schwerpunkt / Micro-Degree keine		Bei Seminar: Se	Bei Seminar: Semesterthema (dt/en)	
Organisationseinheit		Modulverantwo	rtlicher	
IKW		IKW	IKW	

Webseite

http://www.ikw.uni-hannover.de

Qualifikationsziele

Qualifikationsziele Das Modul vermittelt grundlegende Kenntnisse über die Mechanismen der Wärmeübertragung Nach erfolgreicher Absolvierung des Moduls sind die Studierenden in der Lage,

- •aufbauend auf thermodynamischen Gesetzen die Mechanismen der Wärmeübertragung zu verstehen,
- •die passende Modellvorstellung für ein reales, wärmeübertragungstechnisches Problem zu finden und durch das Treffen geeigneter Annahmen eine Reduktion auf einen hinreichend genauen Lösungsansatz vorzunehmen,
- •Ansätze zur Lösung von Wärmeübertragungsproblemen durch Anwendung geeigneter Korrelationen quantitativ zu lösen und grundlegende wärmetechnische Auslegungen einfacher Wärmeübertrager durchzuführen. Die Kenntnisse versetzen die Studierenden in die Lage, Effizienzsteigerung, Verbesserung der Nachhaltigkeit und Maßnahmen zur Ressourcenschonung zu verstehen und umzusetzen.

Inhalt

Inhalt:

- Stationärer Wärmedurchgang
- Wärmestrahlung
- •Instationäre Wärmeleitung
- •Wärmeübertragung an Rippen
- •Auslegung von Wärmeübertragern
- •Konvektiver Wärmetransport
- •Einführung in das Sieden und Kondensieren

Thermodynamik I und II

Literatur

VDI-Wärmeatlas, 10. Aufl. Springer, 2006.

H.D. Baehr / K. Stephan: Wärme- und Stoffübertragung, 7. Aufl. Springer, 2010.

J. Kopitz / W. Polifke: Wärmeübertragung 2. Aufl. Pearson Studium, 2010.

Incropera, F.P.; Dewitt, D.P.; Bergman, T.L., Lavine, A.S.: Principles of heat and mass transfer, 7. Aufl., John Wiley & Sons Singapore Pte. Ltd., 2013.

Stand: 19.09.2024

Weitere Angaben

Titel alt: Wärmeübertragung I mit Laborübung als Studienleistung

keine

1.9. Kompetenzbereich Bachelorarbeit

Englischer Titel: Bachelor Thesis

Information zum: 15 LP, P

- Vorpraktikum -			Sprache	
			Deutsch	
Modultitel englisch			Kompetenzbereich	
Basic Internship			Kompetenzbereich Bachelorarbeit	
Angebot im WS 2024/25			Modultyp	
Vorlesung und Prüfung			Pflicht	
Prüfungsform			Prüfungsbewertung	
noch nicht festgelegt			unbenotet	
Studienleistung			Empfohlenes Fachsemester	
Studienleistung nach E	Bekanntgabe durch V	eranstalter/	-	
Studentische Arbeitsleistung			Frequenz	
Gesamt: 0 Stunden; davon Präsenz: 0 Stunden; davon Selbststudium:			jedes Semester	
0 Stunden				
SWS	LP (ECTS)	Dozent/in	Prüfer/in	
	-	N.N.	N.N.	
Schwerpunkt / Micro	-Degree	Bei Seminar: Semeste	erthema (dt/en)	
		Modulverantwortlich		
Organisationseinheit		N.N.		
Webseite		14.14.		
-				
Qualifikationsziele				
Inhalt				
Teilnahmevoraussetzu	ungen und –empfeh	lungen		
keine				
Literatur				
Weitere Angaben				
-	Vorpraktikum gemä	ß Praktikantenordnung		

Bachelorarbeit [ETIT/EN/MT]			Sprache		
	. , , 1		Deutsch		
Modultitel englisch			Kompetenzbereich		
Bachelor Thesis			Kompetenzbereich Bachelorarbeit		
Angebot im WS 2024/25			Modultyp		
nur Prüfung			Pflicht		
Prüfungsform			Prüfungsbewertung		
Projektarbeit (P)			benotet		
Studienleistung			Empfohlenes Fachsemester		
1, WiSe/SoSe			-		
Studentische Arbeitsleistung			Frequenz		
450 h			jedes Semester		
SWS	LP (ECTS)	Dozent/in	Prüfer/in		
	12 LP		N.N.		
Schwerpunkt / Micro-Degree		Bei Seminar: Sei	Bei Seminar: Semesterthema (dt/en)		
keine					
Organisationseinheit		Modulverantwo	Modulverantwortlicher		
		N.N.	N.N.		

Webseite

https://www.et-inf.uni-hannover.de/de/fakultaet/gremien-kommissionen/pruefungsausschuesse/pru

Qualifikationsziele

Die Bachelorarbeit soll zeigen, dass der Prüfling in der Lage ist, innerhalb einer vorgegebenen Frist ein Problem des Fachs selbstständig nach wissenschaftlichen Methoden zu bearbeiten.

Inhalt

Die Bachelorarbeit ist in deutscher Sprache, in Absprache mit den Prüfenden auch in englischer Sprache abzufassen. Darüber hinaus kann im begründeten Einzelfall die Abfassung in einer anderen Sprache zugelassen werden. Die Erstprüferin beziehungsweise der Erstprüfer der Bachelorarbeit muss Mitglied der Bereiche Elektrotechnik oder Informationstechnik der Fakultät Elektrotechnik und Informatik beziehungsweise der Fakultät für Maschinenbau sein.

Das Thema der Bachelorarbeit muss dem Prüfungszweck (§ 1 Absatz 1 Satz 2 der Prüfungsordnung) und dem für die Bearbeitung zur Verfügung stehenden Zeitraum nach Absatz 4 angemessen sein. Die Themenausgabe darf erst nach erfolgter Zulassung gemäß § 12 Absatz 3 der Prüfungsordnung erfolgen. Das Thema kann einmal innerhalb des ersten Drittels der Bearbeitungszeit zurückgegeben werden. Eine erneute Anmeldung nach Rückgabe des Themas muss innerhalb von sechs Monaten erfolgen. Die Bachelorarbeit ist binnen sechs Monaten nach Ausgabe schriftlich und zusätzlich in elektronischer Form abzuliefern. Die Bachelorarbeit soll innerhalb eines Monats, spätestens nach zwei Monaten, von den beiden Prüfenden bewertet werden. Bei der Abgabe der Bachelorarbeit ist schriftlich zu versichern, dass die Arbeit selbstständig verfasst wurde, keine anderen als die angegebenen Quellen und Hilfsmittel benutzt wurden, alle Stellen der Arbeit, die wörtlich oder sinngemäß aus anderen Quellen übernommen wurden, als solche kenntlich gemacht sind, und die Arbeit in gleicher oder ähnlicher Form noch keiner Prüfungsbehörde vorgelegen hat.

Für die Zulassung zur Bachelorarbeit müssen mind. 120 LP erreicht und das Vorpraktikum anerkannt worden sein.

Stand: 19.09.2024

Literatur

nach Vereinbarung

Weitere Angaben

Das Modul Bachelorarbeit enthält eine Prüfungsleistung. Die Prüfungsleistung Bachelorarbeit hat einen Bearbeitungsumfang von 12 Leistungspunkten.

			Deutsch Kompetenzbereich Kompetenzbereich Bachelorarbeit	
Sachelor Thesis Presentation Angebot im WS 2024/25				
Angebot im WS 2024/25			Kompetenzhereich Rachalararhait	
			Kompetenzoereich bachelorarbeit	
nur Prüfung		Angebot im WS 2024/25		
	nur Prüfung			
Prüfungsform			Prüfungsbewertung	
Seminarleistung (SE)			unbenotet	
Studienleistung			Empfohlenes Fachsemester	
			-	
Studentische Arbeitsleistung			Frequenz	
90 h			jedes Semester	
SWS LP (EC	TS)	Dozent/in	Prüfer/in	
3 LP			N.N.	
Schwerpunkt / Micro-Degree		Bei Seminar: Semesterthema (dt/en)		
reine				
Organisationseinheit		Modulverantwortlicher		
		N.N.		
Vebseite				
Qualifikationsziele				
nhalt				
eilnahmevoraussetzungen u	nd –empfehlun	gen		
eine				
iteratur				
Veitere Angaben				