Lehrveranstaltung	LP	SWS	Prüfer	Prüfung	Note	PNr	Frq	Vorkenntnisse
Advanced Topics in Reinforcement Learning	5	4 SWS = 2V+2Ü	Lindauer	mündlich	ja		u	Vorlesung Reinforcement Learning
Algorithmen und Architekturen für digitale Hörhilfen	5	4 SWS = 2V+2Ü	Ostermann, Blume	mündlich	ja	1121	js	Digitalschaltungen der Elektronik, Grundlagen digitaler Systeme, Signale und Systeme
Analoge integrierte Schaltungen	5	4 SWS = 2V+2Ü	Wicht	Klausur 60	ja		jw	Halbleiterschaltungstechnik, Grundlagen Elektrotechnik, elektronische Bauelemente und Schaltungen
AppLab	6	4 SWS = 4L	Schneider, Klünder	Laborüb.	nein		u	Grundlagen der Softwaretechnik ist Voraussetzung; Beherrschung von Java oder C# ebenfalls.
Application-Specific Instruction-Set Processors	5	4 SWS = 2V+2Ü	Blume	mündlich	ja	1051	jw	empfohlen: - Digitalschaltungen der Elektronik (für ET-Studierende) - Grundlagen digitaler Systeme (für Informatiker)
Applied Machine Learning in Genomic Data Science		4 SWS = 2V+1Ü+1PR	Voges	mündlich	ja		jw	Hands-on programming experience (preferably in Python) is required. We will be programming in Python but not have the capacity to teach the language from scratch. Also, some familiarity with statistics and machine learning basics would be a plus.
Applikationen der digitalen Audiosignalverarbeitung	5	4 SWS = 2V+1Ü+1L	Preihs	mündlich	ja		jw	- Vorlesung Signale und System - Vorlesung Digitale Signalverarbeitung - Grundlagen der Ingenieursmathematik
Architekturen der digitalen Signalverarbeitung	5	4 SWS = 2V+2Ü	Blume	mündlich	ja	211	js	Notwendig: Grundlagen digitaler Systeme (Informatik), — Grundlagen der Rechnerarchitektur — Empfohlen: Digitale Signalverarbeitung
Architekturen für Software und Systeme	3	2 SWS = 2V	Lübke	Klausur 60	ja	691	?	Grundlagen der Softwaretechnik, Softwarequalität und Softwareprojekt empfohlen
Artificial Intelligence in Education	3	2 SWS = 2SE	Kismihók	Seminar	ja		js	Einige Kenntnisse in Programmierung (Python) und maschinellem Lernen werden empfohlen.
Audio and Speech Signal Processing	5	4 SWS = 2V+1Ü+1L	Nogueira-Vazquez	Klausur 60	ja	6319	jw	Required: Fundamentals of Digital Signal Processing; Recommended: "Digitale Signalverarbeitung", "Statistische Methoden", "Informationstheorie" and "Quellencodierung", Fundamentals of Matlab
Aufbaumodul Praktische Philosophie	10	4 SWS = 4SE	N.N.	mündlich	ja		b	Basismodul Praktische Philosophie.
Aufbaumodul Theoretische Philosophie	10	4 SWS = 4SE	N.N.	mündlich	ja		b	Basismodul Theoretische Philosophie.
Aufbaumodul Wissenschaftsphilosophie	10	4 SWS = 4SE	N.N.	mündlich	ja		b	Ein Basismodul der Philosophie.
Ausgewählte Kapitel des Rechts für Informatikstudierende	3	2 SWS = 2V	Bode	Klausur 60	nein		jw	Keine speziellen rechtlichen Vorkenntnisse erforderlich.
AutoML Lab Semesterthema: AutoML Lab	6	4 SWS = 4L	Lindauer	Projektarb.	nein		jw	Für das Belegen der Vorlesung wird dringend empfohlen Grundlagen in den folgenden Bereichen zu haben: * KI * maschinelles Lernen * optional: AutoML Vorlesung
Automated Machine Learning	5	4 SWS = 2V+2Ü	Lindauer	mündlich	ja		js	Basics in Machine Learning; Basics and hands-on in Deep Learning; hands-on experience in Python
Basismodul Geschichte der Philosophie I	7	4 SWS = 2V+2Ü	N.N.	Klausur 90	ja		b	Keine.
Basismodul Geschichte der Philosophie II	7	4 SWS = 2V+2Ü	N.N.	Klausur 90	ja		b	Basismodul Geschichte der Philosophie I.
Basismodul Praktische Philosophie	7	4 SWS = 2V+2Ü	N.N.	Klausur 90	ja		b	Keine
Basismodul Theoretische Philosophie	7	4 SWS = 2V+2Ü	N.N.	Klausur 90	ja		b	Keine
Berechenbarkeit und Logik	7	5 SWS = 2V+1Ü+2SE	Vollmer	mündlich	ja		2js	Grundlagen der theoretischen Informatik, Komplexität von Algorithmen, Logik und Formale Systeme.

Lehrveranstaltung	LP SWS	Prüfer	Prüfung	Note	PNr	Frq	Vorkenntnisse
Betriebssystembau	5 4 SWS = 2V+2Ü	Lohmann	mündlich	ja	3310	js	Programmieren, notwendig. Programmieren in C/C++, empfohlen. Grundlagen der Betriebssysteme (EBS), notwendig. Grundlagen der Rechnerarchitektur (GRA), empfohlen.
Betriebssystembau für Mehrkernsysteme	8 6 SWS = 2V+4Ü	Lohmann	mündlich	ja	1411	js	Programmieren, notwendig — Programmieren in C/C++, empfohlen — Grundlagen der Betriebssysteme (GBS), notwendig — Grundlagen der Rechnerarchitektur (GRA), empfohlen
Bildgebende Systeme für die Medizintechnik	5 4 SWS = 2V+2Ü	Ostermann, Zimmermann, Blume, Rosenhahn	Klausur 100	ja	361	js	
Computational Argumentation	5 4 SWS = 2V+2Ü	Wachsmuth	mündlich	ja		js	Required: - Basics of statistics Knowledge of programming. Recommended: - Any course on machine learning or artificial intelligence Master's course: Statistical Natural Language Processing (preferred) Bachelor's course: Introduction to Natural Language Processing (alternatively).
Computational Health Informatics	5 4 SWS = 2V+2Ü	Krojanski	mündlich	ja	1291	b	Bachelorstudium, Grundkenntnisse Physik (Abiturniveau); notwendi- ge Teile der höheren Mathematik werden in der LV vermittelt
Computer Vision	5 4 SWS = 2V+2Ü	Rosenhahn	Klausur 90	ja	91	js	Empfohlen: Kenntnisse des Stoffs der Vorlesung Digitale Bildverarbeitung. Ergänzende Vorlesungen: Digitale Signalverarbeitung, Digitale Bildverarbeitung und Rechnergestützte Szenenanalyse.
Computer- und Roboterassistierte Chirurgie	5 4SWS = 2V+2Ü	Ortmaier	Klausur 90	ja	6519	js	keine
Creation and Application of Knowledge Graphs	5 4 SWS = 2V+2Ü	Karras, Gottschalk	Klausur	ja		?	We recommend basic knowledge of: - Semantic Web - Knowledge Engineering - Machine Learning - Programming
Data Science Foundations	5 4 SWS = 2V+2Ü	Lindauer	Klausur 90	ja		js	Notwendig: Grundlagen der Wahrscheinlichkeitsrechnung; Vorlesung Datenstrukturen und Algorithmen. Empfohlen: Vorlesung zu Grundlagen der Datenbanksysteme.
Datenbanksysteme II	5 4 SWS = 2V+2Ü	Abedjan	Klausur 90	ja		jw	Grundlagen der Datenbanksysteme
Deep Learning Foundations	5 4 SWS = 2V+2Ü	Sikdar	Klausur 90	ja		jw	Machine learning basics.
Digitale Bildverarbeitung	5 4SWS = 2V+1Ü+1L	Ostermann	Klausur 90	ja	101	js	Kenntnisse der Ingenieursmathematik — empfohlen: Digitale Signalverarbeitung
Digitale Nachrichtenübertragung	5 4SWS = 2V+1Ü+1L	Peissig	mündlich	ja	52201	js	Empfohlen: Modulationsverfahren.
Digitale Transformation in der Automobilindustrie	3 2 SWS = 2V	Nolting	Klausur 90	ja		b	keine
Digitalschaltungen der Elektronik	5 4 SWS = 2V+2Ü	Blume	Klausur 90	ja	3110	js	Grundlagen digitaler Systeme (für Informatiker)
Dynamische Messtechnik und Fehlerrechnung	5 4SWS = 2V+2Ü	Koch	Klausur 60	ja	6718	jw	empfohlen: — Grundlagen der Elektrotechnik, Grundzüge der Messtechnik
Effiziente Algorithmen	7 5 SWS = 2V+1Ü+2SE	Meier	mündlich	ja		u	Grundlagen der Theoretischen Informatik, Komplexität von Algorithmen, Datenstrukturen und Algorithmen
Einführung Usable Security und Privacy	5 4 SWS = 2V+2Ü	Dürmuth	Klausur 90	ja		js	Empfohlen: Vorlesung "Grundlagen der IT Sicherheit" oder vergleich- bare Vorkenntnisse.
Einführung in Empirische Methoden des Human-Centered Computing	5 4 SWS = 2V+2Ü	Schneider, Rohs, Fahl, Dürmuth	Klausur 75	ja		?	Keine Vorkenntnisse erforderlich; die Veranstaltungen von SE, ITsec und HCI im Bachelorstudium bereiten auf die Vorlesung vor.
Einführung in das deutsche Energie- und Klimarecht	3 2 SWS = 2V	Ponick, Gent	Klausur 90			jw	keine
Einführung in die Spielentwicklung	5 4 SWS = 2V+1Ü+1PR	Dockhorn	Klausur 90	ja		jw	Programmierkenntnisse; empfohlene Veranstaltungen Programmieren I und II sowie Datenstrukturen und Algorithmen

Lehrveranstaltung	LP	SWS	Prüfer	Prüfung	Note	PNr	Frq	Vorkenntnisse
Electronic Design Automation	5	$4SWS = 2V + 1\ddot{U} + 1L$	Olbrich	Klausur 75	ja	3404	jw	C++-Erfahrungen sind empfohlen für die praktische Übung.
Elektrische Energieversorgung I	5	$4SWS = 2V + 1\ddot{U} + 1L$	Hofmann	Klausur 100	ja	6210	jw	
Elektrische Klein-, Servo- und Fahrzeugantriebe	5	$4SWS = 2V + 1\ddot{U} + 1L$	Ponick	mündlich	ja	6710	jw	Grundlagen der elektromagnetischen Energiewandlung (notwendig)
Elektrische Kleinmaschinen	5	4 SWS = 2V+1Ü+1L	Ponick	mündlich	ja	6711	js	Notwendig: Grundkenntnisse über die Wirkungsweise rotierender
								elektrischer Maschinen (z.B. Vorlesung Grundlagen der elektroma-
								gnetischen Energiewandlung) — Empfohlen: Vorlesung Elektrische
								Klein- und Servoantriebe
Elektrizität und Relativität	9	6 SWS = 4V+2Ü	Oestreich	Klausur	ja		js	Empfohlen: Vorlesungen "Mechanik und Wärme" und "Mathematische Methoden der Physik".
Elektroakustik	5	4 SWS = 2V+1Ü+1L	Peissig	mündlich	ja	6323	js	Kenntnisse der Ingenieursmathematik, Grundkenntnisse der Elektro-
								technik
Elektrodynamisches Verhalten in dichtgepackter Elektronik	5	4 SWS = 2V+1Ü+1L	Grabinski	mündlich	ja	2721	js	Elektrische Grundlagen
Elektromagnetische Verträglichkeit	5	4 SWS = 2V+1Ü+1L	Manteuffel	Klausur 60	ja	6211	jw	Grundkenntnisse der - Elektrotechnik - Signale und Systeme - Hoch-
								frequenztechnik
Entwurf integrierter digitaler Schaltungen	5	4 SWS = 2V+2Ü	Blume	mündlich	ja	231	jw	
Ergänzende Elektrotechnische Grundlagen der Informatik und In-	5	$4 SWS = 2V + 1\ddot{U} + 1L$	Olbrich	mündlich	ja	4320	jw	,
formationstechnik								onstechnik".
Ethical and Trustworthy Al	3	2 SWS = 2SE	Hildt	Seminar	ja		u	Keine
FPGA-Entwurfstechnik	5	4 SWS = 2V+2Ü	Blume	mündlich	ja	261	jw	
		2.514.5		10				Grundlagen digitaler Systeme (für Informatiker)
Fabrikplanung		3 SWS = 2V+1Ü	Nyhuis	Klausur 60		6510	jw	
Fachdidaktische Grundlagen	3	2 SWS = 2V	Jambor, Krugel	mündlich	nein		jw	keine
Formale Sprachen	7	$4 \text{SWS} = 2 \text{V} + 2 \hat{\text{U}}$	Meier	mündlich	ja	311	2 _J s	Grundlagen der Theoretischen Informatik, Komplexität von Algorithmen
Forschungsprojekt: Mensch-Computer-Interaktion	6	4 SWS = 4PR	Rohs	Projektarb.	nein	1041	jw	Grundlagen der Mensch-Computer-Interaktion empfohlen. Program-
Semesterthema: Forschungsprojekt Mensch-Computer-							-	mierkenntnisse notwendig.
Interaktion / Research Project Human-Computer Interaction								
Fortgeschrittene Algebraische Methoden	12	6 SWS = 4V+2Ü	Schütt	Klausur	ja		jw	Lineare Algebra.
Foundations of Information Retrieval	5	4 SWS = 2V+2Ü	Nejdl	Klausur 90	ja	4714	jw	. 3
Funktionentheorie	12	6 SWS = 4V+2Ü	Lankeit	Klausur	ja		b	Empfohlen: "Mathematik II: Analysis" oder andere Analysis-
								Kenntnisse.
Future Internet Communications Technologies	5	4 SWS = 2V+1Ü+1L	Fidler	Klausur 90	ja	971	jw	Rechnernetze
GIS für Navigationsanwendungen	5	4 SWS = 2V+2Ü	Brenner, Thiemann	mündlich	ja	53501	js	-
Geosensornetze	5	3 SWS = 2V+1Ü	Sester	Laborüb.	ja	6421	jw	, : 3
Geschichte der Elektrotechnik und Informationstechnik	3	2 SWS = 2V	Mathis	mündlich	nein		jw	Grundkenntnisse der Elektrotechnik
Graph-based Machine Learning	5	4 SWS = 2V+2Ü	Dockhorn	Klausur 90	ja		js	For attending the lecture it is strongly recommended to have basic
								knowledge in the following areas: Al (Nejdl), Machine Learning (Ro-
					<u> </u>			senhahn).
Grundlagen der Akustik	5	$4 SWS = 2V + 1\ddot{U} + 1L$	Peissig	mündlich	ja	6322	jw	Kenntnisse der Ingenieursmathematik, Grundkenntnisse der Elektro-
								technik

Lehrveranstaltung	LP SWS	Prüfer	Prüfung	Note	PNr	Frq	Vorkenntnisse
Grundlagen der Medizinischen Informatik	5 4SWS = 2V+2Ü	von Voigt	Klausur 75	ja	5510	jw	keine
Grundlagen der Quantenmechanik für Ingenieure und Informati- ker	5 4SWS = 2V+1Ü+1L	Grabinski	mündlich	ja	4320	js	Empfohlen ggf: Elektrische Grundlagen.
Grundlagen der elektrischen Energiewirtschaft	3 2 SWS = 2V	Hofmann, Kranz	Klausur 75	ja	6212	js	
Grundlagen und Rechenmethoden der elektrischen Energiewirtschaft	5 4 SWS = 2V+1Ü+1L	Hofmann, Kranz	Klausur 90	ja	6219	js	keine
Grundmodul für Bioinformatik	6 5 SWS = 2V+2Ü+1SE	Stahl	Nachweis		54109	jw	
Grundpraktikum A Semesterthema: Grundpraktikum I: Grundlagen zur Messdaten- analyse	5 3 SWS = 3L	Fleddermann	Laborüb.	nein		js	Empfohlen: Vorlesungen "Mechanik und Wärme" und "Mathematische Methoden der Physik.
Human-Robot Interaction: A Hands-on Course	6 4 SWS = 1V+3L	Navarro	mündlich	nein		us	Notwendig: Machine Learning, Deep Learning Foundations. Empf. Computer Vision, Labor: Visual Self-Localisation and Mapping (Visua SLAM).
Hybride Künstliche Intelligenz Semesterthema: Hybride Künstliche Intelligenz	3 2 SWS = 2SE	Kudenko	Seminar	ja		js	Empfohlen: Künstliche Intelligenz I & II
IT-Infrastrukturen in der Medizin	5 4SWS = 2V+2Ü	Krojanski	mündlich	ja	1881	js	Bachelorstudium
Image Analysis I	5 4 SWS = 3V+1Ü	Rottensteiner	mündlich	ja	53201	js	Grundkenntnisse in Mathematik und digitaler Bildverarbeitung.
Image Analysis II	5 4SWS = 3V+1Ü	Rottensteiner	mündlich	ja	53301	jw	Kenntnisse in Mathematik und Statistik; Teilnahme an Bildanalyse (Image Analysis I) wird empfohlen.
Image Sequence Analysis	5 4SWS = 2V+2Ü	Mehltretter	mündlich	ja		jw	Image processing, basics of adjustment theory.
Industrielle Mikroelektronik	3 2 SWS = 2V	Теере	mündlich	nein	1591	js	Empfohlen: Entwurf integrierter digitaler Schaltungen Empfohlen: Entwurf integrierter Mixed-Signal-Schaltungen Empfohlen: Halblei- terschaltungstechnik Grundlagen digitaler Systeme (für Informatiker)
Intensivübung Agile Software-Entwicklung	6 4 SWS = 4L	Schneider	Laborüb.	nein	761	u	Softwaretechnik und Java bestanden (erforderlich).
Interaktive Systeme	5 4 SWS = 2V+2Ü	Rohs	Klausur 90	ja	1111	js	Vorlesung "Grundlagen der Mensch-Computer-Interaktion" (Bachelor) empfohlen.
Interpretable Machine Learning Semesterthema: Interpretable Machine Learning	5 4 SWS = 2V+2Ü	Lindauer	Projektarb.	ja		jw	Für das Belegen der Vorlesung wird dringend empfohlen, Grundkennt- nisse in den folgenden Bereichen zu haben: KI, Maschinelles Lernen Deep Learning.
Introduction to Natural Language Processing	5 4SWS = 2V+2Ü	Wachsmuth	Klausur 90	ja		js	Recommended: - Basics of statistics Knowledge of programming.
Knowledge Engineering und Semantic Web	5 4SWS = 2V+2Ü	Auer	Klausur 60	ja	1191	js	Basic knowledge of: — - XML — - Databases — - HTTP & the Web
Komplexitätstheorie	7 5 SWS = 2V+1Ü+2SE	Vollmer	mündlich	ja		u	Grundlagen der Theoretischen Informatik, Komplexität von Algorithmen, Logik und Formale Systeme (empfohlen)
Künstliche Intelligenz I	5 4 SWS = 2V+2Ü	Nejdl	Klausur 90	ja	4810		Basic knowledge of computer science, algorithms and data structures
Künstliche Intelligenz II	5 4 SWS = 2V+2Ü	Nejdl	Klausur 90	ja		jw	Basic knowledge of computer science, algorithms and data structures as well as the course Artificial Intelligence (I).
Künstliche Intelligenz für die Automobilbranche	3 2 SWS = 2V	Nolting	Klausur	ja	1861	js	Künstliche Intelligenz I oder II. Und/oder Data Mining I
Labor Usable Security Lab	6 4 SWS = 4L	Dürmuth	Laborüb.	nein		u	Erforderlich: Vorlesung "Einführung Usable Security and Privacy" "Human Centered Security" oder vergleichbare Vorkenntnisse.
Labor: Advanced Computational Health Informatics	6 4 SWS = 4L	von Voigt, Krojanski	Laborüb.	nein	1531	Ь	Bachelorstudium; Inhalte der Lehrveranstaltung Computational He alth Informatics (Vorlesung und Übungen) werden vorausgesetzt bspw.: Statistik und Parameterschätzung, Signalverarbeitung (Filter Apodisierung), solides Verständnis der Signalentstehung bei NMR, RF Pulse, Relaxation, grundlegende Techniken der MRT (Schichtselekti on, Frequenz- und Phasenkodierung, Bloch-Gleichungen und derei Lösungen, Spin-Echo-Bildgebung, k-Raum): darauf aufhauende ex

Lehrveranstaltung	LP	SWS	Prüfer	Prüfung	Note	PNr	Frq	Vorkenntnisse
Labor: Argumentation Technology	6	4 SWS = 4L	Wachsmuth	Laborüb.	nein		js	Required: - Knowledge of programming Any course on natural lan- guage processing, machine learning, or artificial intelligence. Recom- mended: - Master' course "Computational Argumentation" (ideally in parallel to the lab).
Labor: Artificial Intelligence	6	4 SWS = 4L	Nejdl	Laborüb.	nein	701	b	Notwendig: "Künstliche Intelligenz I" bzw. "Information Retrieval".
Labor: Audiokommunikation und Akustik	6	4 SWS = 4L	Peissig	Laborüb.	nein	6325	js	Sehr empfohlen sind Grundkenntnisse in Matlab und Kenntnisse aus den Vorlesungen Grundlagen der Akustik und Elektroakustik.
Labor: Betriebssystemtechniklabor (BSTL)	6	4 SWS = 1V+3L	Lohmann	Laborüb.	nein	1431	jw	Programmieren, notwendig. Programmieren in C/C++, notwendig. Betriebssystembau oder Betriebssystembau für Mehrkernsysteme (BSB), notwendig. Grundlagen der Rechnerarchitektur (GRA), empfohlen.
Labor: Ethical Artificial Intelligence	6	4 SWS = 4L	Wachsmuth	Laborüb.	nein		jw	Required: - Knowledge of programming Any course on natural lan- guage processing, machine learning, or artificial intelligence. Recom- mended: - Master's course "Statistical Natural Language Processing".
Labor: FPGA-Entwurfstechnik	6	4 SWS = 4L	Blume	Laborüb.	nein	731		Empfohlen: Digitalschaltungen der Elektronik (für ET-Studierende, Grundlagen digitaler Systeme (für Informatiker)
Labor: Graphische 3D Datenverarbeitung in der Medizin		4 SWS = 4L	Friese	Laborüb.	nein		jw	Vorkenntnisse in Graphischer Datenverarbeitung werden empfohlen. Programmierkenntnisse in Java sollten vorhanden sein.
Labor: Human Centered Security Semesterthema: From Idea to Paper. How to Contribute Science to Human Centered Security Research	6	4 SWS = 4L	Fahl	Laborüb.	nein	1841	js	Es werden Vorkenntnisse aus der Vorlesung Grundlagen der IT- Sicherheit vorausgesetzt. Empfohlen werden außerdem Kenntnisse, die in den Veranstaltungen "Einführung Usable Security und Priva- cy", "Usable Security and Privacy Lab" und "Einführung in Empirische Methoden des Human-Centered Computing" vermittelt werden.
Labor: Human Language Technology	6	4 SWS = 4L	Wachsmuth	Laborüb.	nein		jw	Required: - Knowledge of programming Any course on natural language processing, machine learning, or artificial intelligence. Recommended: - Master' course "Statistical Natural Language Processing" (ideally in parallel to the lab).
Labor: IoT Communication Technologies	6	4 SWS = 4L	Fidler	Laborüb.	nein	6220	js	Rechnernetze
Labor: Maschinelles Lernen für Künstliche Intelligenz in Spielen	6	4 SWS = 4L	Rosenhahn	Laborüb.	nein	1491	jw	Die Vorlesung Maschinelles Lernen und grundlegende Kenntnisse in Python sind von Vorteil, aber nicht zwingend erforderlich.
Labor: Matlab für die medizinische und industrielle Bildinterpretation	6	4 SWS = 4L	Rosenhahn	Laborüb.	nein	621	jw	Ergänzende Vorlesungen: Computer Vision, Bildverarbeitung, Matching/ Tracking
Labor: Neuroevolution	6	4 SWS = 4L	von Voigt	Laborüb.	nein		b	Empfohlen sind Grundkenntnisse in Python und theoretisches Wissen über neuronale Netze.
Labor: Nutzung von Containervirtualisierung in der Medizin	6	4 SWS = 4L	von Voigt, Krojanski	Laborüb.	nein		jw	Linux-Kenntnisse sind vorteilhaft, werden aber auch in der LV vermittelt.
Labor: Rechnernetze	1	4 SWS = 4L	Fidler	Laborüb.	nein	631	jw	Rechnernetze
Labor: Usability Engineering		4 SWS = 4L	Schneider	Laborüb.	nein	781	u	Programmierkenntnisse in Java, am besten Erfahrungen in GUI- Programmierung (Swing). — Vorlesung Software-Qualität.
Labor: Visual Self-Localisation and Mapping (Visual SLAM)	1 -	4 SWS = 4L	Rosenhahn	Laborüb.	nein		jw	
Laserscanning - Modellierung und Interpretation	_	3 SWS = 2V+1Ü	Brenner	Laborüb.	ja	6417	jw	Geo Information Systems, programming skills
Leistungselektronik l	5	4 SWS = 2V+1Ü+1L	Mertens	Klausur 90	ja	6213	jw	Grundlagen der Elektrotechnik (notwendig), Grundlagen der Halbleitertechnik (empfohlen)

Lehrveranstaltung	LP	SWS	Prüfer	Prüfung	Note	PNr	Frq	Vorkenntnisse
Logik und Komplexität	7	5 SWS = 2V+1Ü+2SE	Meier	mündlich	ja		u	Logik und formale Systeme, Komplexität von Algorithmen
Logischer Entwurf digitaler Systeme	5	4 SWS = 2V+2Ü	Blume	Klausur 90	ja	3810	js	Kenntnisse der Vorlesung "Grundlagen digitaler Systeme".
Maschinelles Lernen	5	4 SWS = 2V+2Ü	Rosenhahn	Klausur 90	ja	1311	js	Ergänzende Vorlesungen: Digitale Signalverarbeitung, Digitale Bildverarbeitung, Computer Vision, Rechnergestützte Szenenanalyse
Maschinelles Lernen in der Cybersicherheit	5	4 SWS = 2V+2Ü	Fritz	Klausur 90	ja		u	Empfohlen: Kenntnis im Bereich Deep Learning Erforderlich: Mathematik des Grundstudiums (lineare Algebra, Analysis, Wahrscheinlichkeitsrechnung), Maschinelles Lernen
Mechatronische Systeme	5	4 SWS = 2V+2Ü	Seel	Klausur 120	ja	6611	jw	Signale und Systeme, Grundlagen der Elektrotechnik, Technische Me- chanik, Maschinendynamik, Grundlagen der Mess- und Regelungs- technik
Medizinische IT-Anwendungen	5	4 SWS = 2V+2Ü	von Voigt	Klausur 75	ja	1571	js	Programmieren I + II
Mikro- und Nanotechnologie	5	3 SWS = 2V+1Ü	Wurz	Klausur 90	ja	6513	jw	keine
Mikroelektronik Projekt		2 SWS = 2L	Blume	Projektarb.	nein		jw	Grundlegende Kenntnisse und Fähigkeiten im hardwarenahen Programmieren und in der Digitaltechnik, insbesondere von Mikrocontrollern oder FPGAs. Grundlegende Kenntnisse und Fähigkeiten im System- und Schaltungsentwurf.
Mixed-Signal-Schaltungen	5	4 SWS = 2V+1Ü+1L	Wicht	Klausur 60	ja	1391	jw	notwendig: Grundlagen Elektrotechnik, elektronische Bauelemente und Schaltungen; empfohlen: Kleinsignalanalyse
Mobile Interaction Design Lab	6	4 SWS = 1V+3L	Rohs	Laborüb.	nein		jw	Empfohlen: Grundlagen der Mensch-Computer-Interaktion
Mobile Interaktion	5	4 SWS = 2V+2Ü	Rohs	Klausur 90	ja	1101	js	Die Vorlesung "Grundlagen der Mensch-Computer-Interaktion" wird empfohlen.
Mobilkommunikation	5	4 SWS = 2V+1Ü+1L	Fidler	Klausur 90	ja	6312	js	Die Vorlesung baut auf die in der Vorlesung Rechnernetze (RN) vermittelten Grundlagen auf.
Modellierung von Bioprozessen	6	5 SWS = 1V+1Ü+3PR	Stahl	mündlich	ja	54201	jw	
Multi-Agenten Interaktionen und Spiele	3	2 SWS = 2V	Kudenko	Klausur 75	ja		jw	Grundlagen der Künstlichen Intelligenz (Suchalgorithmen, Agentensysteme).
Nachhaltige Verbrennungstechnik	5	4 SWS = 2V+1Ü+1L	Dinkelacker	Klausur 90	ja	6517	js	Empfohlen: Grundbegriffe der Thermodynamik
Network Calculus	5	4 SWS = 2V+1Ü+1L	Fidler	Klausur 90	ja	6316	jw	Rechnernetze (RN)
Numerik Partieller Differentialgleichungen	12	6 SWS = 4V+2Ü	Beuchler	mündlich	ja	56501	jw	Empfohlen: Numerische Mathematik I.
Numerische Mathematik II	12	6 SWS = 4V+2Ü	Wick	Klausur	ja	56401	js	Empfohlen: Numerische Mathematik I.
Optimierung technischer Systeme	5	4 SWS = 2V+1Ü+1PR	Leveringhaus	mündlich	ja	3656	js	Aufbau, Wirkungsweise und Modellierung von Komponenten elektri- scher Anlagen und Systeme
Physical Computing Lab	6	4 SWS = 1V+3L	Rohs	Laborüb.	nein	1201	js	keine
Power Management	5	4 SWS = 2V+1Ü+1L	Wicht	Klausur 60	ja	3410	js	Grundlagen Elektrotechnik, elektronische Bauelemente und Schaltungen
Praktische Verfahren der Mathematik	14	10 SWS = 6V+4Ü	Steinbach	mündlich	ja		bw+s	Empfohlen: "Mathematik 1: Lineare Algebra", "Mathematik 2: Analysis".
Produktion optoelektronischer Systeme	5	3 SWS = 2V+1Ü	Overmeyer	Klausur 90		6515	jw	Keine
Produktionsmanagement und -logistik	5	3 SWS = 2V+1Ü	Nyhuis, Kuprat	Klausur	ja	6521	jw	Grundlegendes Verständnis produktionslogistischer Abläufe und Zusammenhänge, grundlegende betriebswirtschaftliche Kenntnisse. Interesse an Unternehmensführung und Logistik.

Lehrveranstaltung	LP	SWS	Prüfer	Prüfu	ing	Note	PNr	Frq	Vorkenntnisse
Programmierpraktikum [TI]	5		Olbrich	Labori	üb.	nein	5010	js	Vorlesung Programmieren I, daraus Grundlagen in C.
Projekt: ASIPLab - Entwurf von anwendungsspezifischen Instruktionssatzprozessoren	6	4 SWS = 4PR	Blume	Projekta	arb.	nein	1621	js	Empfohlen: - Application-Specific Instruction-Set Processors - Grundlagen digitaler Systeme oder Digitalschaltungen der Elektronik - Grundzüge der Informatik und Programmierung
Projekt: Big-Data-Technologien Semesterthema: Large Scale Data Processing	6	4 SWS = 4PR	Abedjan	Projekta	arb.	nein		jw	GDBS, Programmierkenntnisse
Projekt: Machine Learning	6	4 SWS = 4PR	Lindauer	Projekta	arb.	nein		b	Es wird dringend empfohlen vorher Kurse zu Machine Learning (Bodo Rosenhahn) und Kurse des Fachgebiets ML (AutoML, RL, iML) erfolgreich abgeschlossen zu haben.
Projekt: Mikroelektronik - Chipdesign	6	4 SWS = 4L	Blume	Projekta	arb.	nein	851	js	Es sind Vorkenntnisse in Hardwarebeschreibungssprachen (speziell VHDL) erforderlich. Ein Besuch des Labors: FPGA-Entwurfstechnik ist empfehlenswert.
Projekt: Programmier-Challenge Semesterthema: Programmier-Challenge	5	4 SWS = 4PR	von Voigt	Projekta	arb.	nein		jw	Notwendig sind Grundlagen zum Erstellen von Software und zugehöriger Dokumentation (Software-Technik, Programmieren 1 + 2). Empfohlen werden Kenntnisse im Umgang mit der Versionsverwaltung Git. Diese können aber auch in der Veranstaltung erworben werden.
Projekt: System- und Rechnerarchitekturen	6	4 SWS = 4PR	Lohmann	Projekta	arb.	nein	821	js	Programmieren in C, erforderlich — Programmieren in C++, empfohlen — Grundlagen der Rechnerarchitektur (GRA), empfohlen — Rechnerstrukturen (RS), empfohlen — Grundlagen der Betriebssysteme (GBS), empfohlen — Betriebssystembau (BSB), empfohlen
Quantum Information Processing	5	4 SWS = 2V+2Ü	Hirche	mündli	ich	ja		js	recommended, not necessary: Grundlagen der Quantenmechanik für Ingenieure und Informatiker.
Quellencodierung	5	4 SWS = 2V+1Ü+1L	Ostermann	mündli	ich	ja	6313	jw	Kenntnisse der Wahrscheinlichkeitsrechnung und der Informations- theorie sind erforderlich, Kenntnisse des Vorlesungsstoffs "Statisti- sche Methoden" sowie "Informationstheorie" sind sinnvoll.
Rechnerstrukturen	5	4 SWS = 2V+2Ü	Brehm	Klausui	r 90	ja	3910	jw	Grundlagen digitaler Systeme (notwendig). Programmieren (notwendig). Grundlagen der Rechnerarchitektur (notwendig).
Regelungstechnik II	5		Müller	Klausur	120	ja	6714	js	Regelungstechnik I
Reinforcement Learning Semesterthema: Reinforcement Learning	5	4 SWS = 2V+2Ü	Lindauer	Projekta	arb.	ja		jw	Für das Belegen der Vorlesung wird dringend empfohlen Grundlagen in den folgenden Bereichen zu haben: * KI * maschinelles Lernen / Deep Learning
Relativistische Elektrodynamik - Grundlagen und Grenzen	5	$4SWS = 2V + 1\ddot{U} + 1L$	Grabinski	mündli	ich	ja	2756	jw	keine
Requirements Engineering	5		Schneider	mündli	ich	ja	131	u	Grundlagen der Softwaretechnik
Robotik I	5		Müller	Klausui	r90	ja	6715		empfohlen: Regelungstechnik, Mehrkörpersysteme
Robotik II	5		Seel	Klausui	r 90	ja	6716	js	Robotik I; Regelungstechnik; Mehrkörpersysteme.
SLAM (Simultaneous Localization and Mapping) and Path Planning	5	3 SWS = 2V+1Ü	Brenner	mündli	ich	ja		jw	programming skills
Scientific Computing I	5	4 SWS = 2V+1Ü+1L	Ostermann	Klausui	r90	ja	1661	jw	Programmiersprachen C, C++; Mathematik für Ingenieure 1-2; Numerische Mathematik
Scientific Data Management and Knowledge Graphs	5	4 SWS = 2V+2Ü	Vidal	Klausui	r 90	ja		u	Introduction to Databases and basic concepts of Semantic Web technologies.

Lehrveranstaltung		SWS	Prüfer	Prüfung	Note	PNr	Frq	Vorkenntnisse
Seminar on Scientific Data Management	3	2 SWS = 2SE	Vidal	Seminar	ja		js	Databases and basic concepts of Semantic Web technologies.
Seminar: Advanced Topics in Database Systems	3	2 SWS = 2SE	Abedjan	Seminar	ja		jw	Data Integration Lecture or DBS II.
Semesterthema: Data Integration and Data Exploration								
Seminar: Artificial Intelligence		2 SWS = 2SE	Nejdl	Seminar	ja	411	b	Künstliche Intelligenz I oder Künstliche Intelligenz II
Seminar: Ausgewählte Kapitel der systemnahen Informatik	3	2 SWS = 2SE	Lohmann	Seminar	ja	1421	?	Grundlagen der Betriebssysteme (aus GBS), erforderlich. Programmie-
Semesterthema: Siehe Veranstaltungsseite.								ren in C, empfohlen Betriebssystembau, empfohlen
Seminar: Computer Vision, Szenenanalyse und Codierung	3	2 SWS = 2SE	Rosenhahn	Seminar	ja	421	js	Kenntnisse des Stoffs aus EINER der Vorlesungen Digitale Bildverar-
					ļ.,			beitung, Computer Vision oder Maschinelles Lernen empfohlen.
Seminar: Data Science & Digital Libraries	3	2 SWS = 2SE	Stocker	Seminar	ja	1471	u	Datenbanken & Informationssysteme. Empfehlung: Knowledge Engi-
Semesterthema: Data Science & Digital Libraries	-	o CMC occ	D :01					neering and Semantic Web.
Seminar: Didaktik für studentische Übungsleiter/-innen der Elek- trotechnik und Informatik	3	2 SWS = 2SE	Preißler	Seminar	nein		u	Keine
Seminar: Digital Health	3	2 SWS = 2SE	von Voigt, Krojanski	Seminar	ja		b	Keine
Semesterthema: Themenbereiche des Digital Health		23113 232	Ton Tonge, Krojanski	Semma	٦			Tellie Tellie
Seminar: Informationssicherheit in der Medizin	3	2 SWS = 2SE	von Voigt, Krojanski	Seminar	ja	1341	b	Bachelorstudium
Seminar: Komplexitätstheorie		2 SWS = 2SE	Meier	Seminar	ja	501	is	Notwendig: Grundlagen der theoretischen Informatik, Komplexität
Semesterthema: Schach – algorithmische und komplexitätstheo-					′		_	von Algorithmen, Diskrete Strukturen, Datenstrukturen und Algorith-
retische Aspekte								men, Schach-Regeln Empfohlen: Komplexitästheorie oder Logik und
,								Komplexität
Seminar: Konferenzseminar Usable Security and Privacy	3	2 SWS = 2SE	Dürmuth	Seminar	ja		jw	Empfohlen: Kenntnisse im Bereich IT Sicherheit/Usable Security
Seminar: Natural Language Generation	3	2 SWS = 2SE	Wachsmuth	Seminar	ja		js	Required: - Basics of statistics Any course on natural language pro-
Semesterthema: Neural Language Models								cessing, machine learning, or artificial intelligence. Recommended:
								Master's course: Statistical Natural Language Processing (preferred).
								Bachelor's course: Introduction to Natural Language Processing (al-
								ternatively)
Seminar: Verlässliche und Skalierbare Softwaresysteme	3	2 SWS = 2SE	Rellermeyer	Seminar	ja		js	Verteilte Systeme, empfohlen; Grundlagen der Betriebssysteme, emp-
								fohlen.
Sicherheit Mobiler Systeme	5	4 SWS = 2V+2Ü	Bugiel	Klausur 90	ja		u	Erforderlich: Grundkenntnisse in Java Programmierung
Social Computing	5	4 SWS = 2V+2Ü	Elejalde Sierra	mündlich	ja		?	Grundkenntnisse in Programmierung (z.B. Python) und Datenmani-
								pulation sind von Vorteil.
Social Responsibility in Machine Learning		4 SWS = 2V+1Ü+1PR	Lindauer	Projektarb.	nein		js	* Machine Learning and related courses
Software Process Engineering	5		Klünder	Klausur 75	ja	1691	?	Grundlagen der Software-Technik — Software-Projekt
Software-Qualität	5	4 SWS = 2V+2Ü	Klünder	Klausur 75	ja	5110	js	Grundlagen der Software-Technik
Spatial Data Science	5	3 SWS = 2V+1Ü	Sester	mündlich	ja		js	empfohlen: GIS Basics (Einführung in GIS und Kartographie, Geoin-
								formationssysteme)
Statistical Natural Language Processing	5	4 SWS = 2V+2Ü	Wachsmuth	mündlich	ja		jw	Required: - Basics of statistics Knowledge of programming Recom-
								mended: - Any course on machine learning or artificial intelligence.
								- Bachelor's course: Introduction to Natural Language Processing.
Strömungsmechanik I		4 SWS = 2V+2Ü	Seume	Klausur 90	ja	6516	-	Thermodynamik, Technische Mechanik IV
Text Mining		4 SWS = 2V+2Ü	Sikdar	Klausur 90	ja		js	Empfohlen: Machine learning basics
Verteilte Systeme	5	$4 \text{SWS} = 2 \text{V} + 2 \ddot{\text{U}}$	Rellermeyer	Klausur 90	ja		jw	Rechnernetze; Kenntnisse (mindestens) einer höheren Programmier-
								sprache.

Lehrveranstaltung	LP	SWS	Prüfer	Prüfung	Note	PNr	Frq	Vorkenntnisse
Vertiefende Aspekte der Fachdidaktik	3	2 SWS = 2V	Jambor, Krugel	mündlich	nein		js	Die Kenntnisse aus dem ersten Teil der Vorlesung "Fachdidaktische
								Grundlagen" im Wintersemester werden erwartet.
Vertiefung der Betriebssysteme	5	4 SWS = 2V+2Ü	Fiedler	Klausur	ja		js	Grundlagen der Betriebssysteme.
Visual Analytics	5	4 SWS = 2V+2Ü	Ewerth	mündlich	ja	1261	jw	Hilfreich, aber nicht erforderlich zum Verständnis der Vorlesungsin-
								halte: Graphische Datenverarbeitung, Data Mining, Foundations of
								Information Retrieval.
Wissenschaftliche Methodik und Soft Skills im Ingenieurs- und	4	3 SWS = 2V+1Ü	Körner	Seminar	nein		b	Diese Veranstaltung richtet sich an alle interessierten Studierenden
Forschungsbereich								verschiedener naturwissenschaftlicher Fachrichtungen, die schon an
								mindestens einem Projekt (mit)gearbeitet haben.
Zuverlässigkeit elektronischer Komponenten	5	4 SWS = 2V+1Ü+1L	Weide-Zaage	mündlich	ja	6317	b	Thermodynamik, Halbleitertechnologie, Numerische Schaltungs- und
								Feldberechnung.
- Betriebspraktikum -	15			Nachweis	nein	3060	b	
- Lehrveranstaltungen aus einem Vertiefungsfach der Betriebs-					ja		b	Erfolgreiche Teilnahme an Modulen des Nebenfachstudiums Be-
wirtschaftslehre -								triebswirtschaftslehre in der Baschelorphase im Umfang mindestens
								6 Semesterwochenstunden / 12 Leistungspunkten.
- Lehrveranstaltungen aus einem Vertiefungsfach der Volkswirt-					ja		b	Mindestens 12 (empfohlen 16) Leistungspunkte aus den Modulen des
schaftslehre -								Nebenfachs VWL im Bachelorstudiengang Informatik.

Abkürzungen:

- *LP* = Leistungspunkte
- SWS = Semesterwochenstunden (V = Vorlesung, Ü = Übung, L = Labor, PR = Projekt, SE = Seminar)
- (unter *Prüfung*:) z.B. Klausur 90 = Klausur von 90 Minuten
- *PNr* = Prüfungsnummer
- Frq = Frequenz (b = jedes Semester, j = jährlich, 2j = zweijährlich, u=unregelmäßig, 1 = einmalig, w = im Wintersemester, s = im Sommersemester)

Stand: 4. April 2024