

Lehrveranstaltungsliste für den Studiengang Energietechnik Master (PO 2024) im Wintersemester 2024/2025

> Fakultät Elektrotechnik und Informatik Leibniz Universität Hannover

> > Stand: 19.09.2024

Lehrveranstaltung	LP	SWS	Prüfer	Prüfung	Note	PNr	Frq	Vorkenntnisse
Aerodynamik und Aeroelastik von Windenergieanlagen	5	3 SWS = 2 V + 1 Ü	Gómez González	Klausur (90 min)	Ja		jw	Strömungsmechanik I und Strömungsmechanik II (empfohlen), Technische Mechanik IV, Maschinendynamik
Aerodynamik und Aeroelastik von Windenergieanlagen	5	3 SWS = 2 V + 1 Ü	Gómez González	Klausur (90 min)	Ja		jw	Strömungsmechanik I und Strömungsmechanik II (empfohlen), Technische Mechanik IV, Maschinendynamik
Aerodynamik und Aeroelastik von Windenergieanlagen	5	3 SWS = 2 V + 1 Ü	Gómez González	Klausur (90 min)	Ja		jw	Strömungsmechanik I und Strömungsmechanik II (empfohlen), Technische Mechanik IV, Maschinendynamik
Anlagenbau und Apparatetechnik	4	3 SWS = 2 V + 1 Ü	Lörcher	mündl. Prüfung (MP)	Nein		jw	Transportprozesse in der Verfahrenstechnik
Ausgleichsvorgänge in Elektroenergiesystemen	5	4 SWS = 2 V + 1 Ü + 1 L	Hofmann	mündl. Prüfung (MP)	Ja		js	
Bachelorprojekt Energietechnik - Technische Verbrennung	5	5 SWS = 5 P	Dinkelacker	Projektarbeit (P)	Nein		b	
Batteriespeichersysteme	5	4 SWS = 2 V + 1 Ü + 1 L	Hanke- Rauschenbach	Klausur (min)	Ja		js	
Batteriespeichersysteme	5	4 SWS = 2 V + 1 Ü + 1 L	Hanke- Rauschenbach	Klausur (min)	Ja		js	
Batteriespeichersysteme	5	4 SWS = 2 V + 1 Ü + 1 L	Hanke- Rauschenbach	Klausur (min)	Ja		js	
Batteriespeichersysteme	5	4 SWS = 2 V + 1 Ü + 1 L	Hanke- Rauschenbach	Klausur (min)	Ja		js	
Batteriespeichersysteme	5	4 SWS = 2 V + 1 Ü + 1 L	Hanke- Rauschenbach	Klausur (min)	Ja		js	
Berechnung elektrischer Maschinen	5	4 SWS = 2 V + 1 Ü + 1 L	Ponick	mündl. Prüfung (MP)	Ja		js	Grundlagen der elektromagnetischen Energiewandlung (notwendig)
Berechnung elektrischer Maschinen	5	4 SWS = 2 V + 1 Ü + 1 L	Ponick	mündl. Prüfung (MP)	Ja		js	Grundlagen der elektromagnetischen Energiewandlung (notwendig)
Berechnung elektrischer Maschinen	5	4 SWS = 2 V + 1 Ü + 1 L	Ponick	mündl. Prüfung (MP)	Ja		js	Grundlagen der elektromagnetischen Energiewandlung (notwendig)

Lehrveranstaltung	LP	SWS	Prüfer	Prüfung	Note	PNr	Frq	Vorkenntnisse
Berechnung elektrischer Maschinen	5	4 SWS = 2 V + 1 Ü + 1 L	Ponick	mündl. Prüfung (MP)	Ja		js	Grundlagen der elektromagnetischen Energiewandlung (notwendig)
Berechnung elektrischer Maschinen	5	4 SWS = 2 V + 1 Ü + 1 L	Ponick	mündl. Prüfung (MP)	Ja		js	Grundlagen der elektromagnetischen Energiewandlung (notwendig)
Brennstoffzellen und Wasserelektrolyse	5	5 SWS = 3 V + 2 Ü	Hanke- Rauschenbach	Klausur (min)	Ja		js	Thermodynamik, Transportprozesse in der Verfahrenstechnik
Brennstoffzellen und Wasserelektrolyse	5	5 SWS = 3 V + 2 Ü	Hanke- Rauschenbach	Klausur (min)	Ja		js	Thermodynamik, Transportprozesse in der Verfahrenstechnik
Brennstoffzellen und Wasserelektrolyse	5	5 SWS = 3 V + 2 Ü	Hanke- Rauschenbach	Klausur (min)	Ja		js	Thermodynamik, Transportprozesse in der Verfahrenstechnik
Brennstoffzellen und Wasserelektrolyse	5	5 SWS = 3 V + 2 Ü	Hanke- Rauschenbach	Klausur (min)	Ja		js	Thermodynamik, Transportprozesse in der Verfahrenstechnik
Brennstoffzellen und Wasserelektrolyse	5	5 SWS = 3 V + 2 Ü	Hanke- Rauschenbach	Klausur (min)	Ja		js	Thermodynamik, Transportprozesse in der Verfahrenstechnik
Brennstoffzellen und Wasserelektrolyse	5	5 SWS = 3 V + 2 Ü	Hanke- Rauschenbach	Klausur (min)	Ja		js	Thermodynamik, Transportprozesse in der Verfahrenstechnik
Computergestützter Windpark-Entwurf mit WindPRO	5	4 SWS = 2 V + 2 Ü	Balzani	mündl. Prüfung (MP)	Ja	5635	jw	Windenergietechnik I, Planung und Errichtung von Windparks (kann parallel belegt werden)
Dampfturbinen für heutige und zukünftige Energiesysteme	5	4 SWS = 2 V + 1 Ü + 1 L	Seume	mündl. Prüfung (MP)	Ja		js	Thermodynamik, Strömungsmaschinen, Strömungsmechanik 1
Dampfturbinen für heutige und zukünftige Energiesysteme	5	4 SWS = 2 V + 1 Ü + 1 L	Seume	mündl. Prüfung (MP)	Ja		js	Thermodynamik, Strömungsmaschinen, Strömungsmechanik 1
Dampfturbinen für heutige und zukünftige Energiesysteme	5	4 SWS = 2 V + 1 Ü + 1 L	Seume	mündl. Prüfung (MP)	Ja		js	Thermodynamik, Strömungsmaschinen, Strömungsmechanik 1
Einführung in das Recht für Ingenieure	3	2 SWS = 2 V	von Zastrow	Keine	Nein	3704	jw	
Electric Machines and Drives	5	4 SWS = 2 V + 1 Ü + 1 L	Bresemann	mündl. Prüfung (MP)	Ja	1410	jw	two terms of the international study program Energy Technolgy
Electrical Energy Storage	5	4 SWS = 2 V + 1 Ü + 1 L	Bensmann, Bensmann	mündl. Prüfung (MP)	Ja	1310	jw	

Lehrveranstaltung	LP	SWS	Prüfer	Prüfung	Note	PNr	Frq	Vorkenntnisse
Electrical Machines for eAutomotive Traction Applications	3	2 SWS = 2 V	Ponick, Dotz	mündl. Prüfung (MP)	Nein	3876	j	
Electrical Machines for eAutomotive Traction Applications with Journal Club	5	4 SWS = 2 V + 2 Ü	Dotz, Ponick	mündl. Prüfung (MP)	Ja	1710	jw	
Electrothermal Processing (Electrotechnologies)	5	4 SWS = 2 V + 1 Ü + 1 L	Baake	mündl. Prüfung (MP)	Ja	1510	jw	two terms of the international master program Energy Technology
Elektrische Antriebssysteme	5	4 SWS = 2 V + 1 Ü + 1 L	Ponick	mündl. Prüfung (MP)	Ja		js	Grundlagen der elektromagnetischen Energiewandlung (notwendig)
Elektrische Antriebssysteme	5	4 SWS = 2 V + 1 Ü + 1 L	Ponick	mündl. Prüfung (MP)	Ja		js	Grundlagen der elektromagnetischen Energiewandlung (notwendig)
Elektrische Energiespeichersysteme	5	5 SWS = 2 V + 2 Ü + 1 L	Hanke- Rauschenbach	Klausur (90 min)	Ja		jw	keine besonderen Vorkenntnisse nötig
Elektrische Energiespeichersysteme	5	5 SWS = 2 V + 2 Ü + 1 L	Hanke- Rauschenbach	Klausur (90 min)	Ja		jw	keine besonderen Vorkenntnisse nötig
Elektrische Energiespeichersysteme	5	5 SWS = 2 V + 2 Ü + 1 L	Hanke- Rauschenbach	Klausur (90 min)	Ja		jw	keine besonderen Vorkenntnisse nötig
Elektrische Energieversorgung II	5	4 SWS = 2 V + 1 Ü + 1 L	Hofmann	mündl. Prüfung (MP)	Ja		js	
Elektrische Energieversorgung II	5	4 SWS = 2 V + 1 Ü + 1 L	Hofmann	mündl. Prüfung (MP)	Ja		js	
Elektrische Energieversorgung II	5	4 SWS = 2 V + 1 Ü + 1 L	Hofmann	mündl. Prüfung (MP)	Ja		js	
Elektrische Klein-, Servo- und Fahrzeugantriebe	5	4 SWS = 2 V + 1 Ü + 1 L	Ponick	Klausur (120 min)	Ja		jw	Grundlagen der elektromagnetischen Energiewandlung (notwendig)
Elektrische Kleinmaschinen	5	4 SWS = 2 V + 1 Ü + 1 L	Ponick	mündl. Prüfung (MP)	Ja		js	Notwendig: Grundkenntnisse über die Wirkungsweise rotierender elektrischer Maschinen (z.B. Vorlesung Grundlagen der elektromagnetischen Energiewandlung) Empfohlen: Vorlesung Elektrische Klein- und Servoantriebe

Lehrveranstaltung	LP	SWS	Prüfer	Prüfung	Note	PNr	Frq	Vorkenntnisse
Elektrothermische Verfahren	5	4 SWS = 2 V + 1 Ü + 1 L	Baake	mündl. Prüfung (MP)	Ja		jw	
Elektrothermische Verfahren	5	4 SWS = 2 V + 1 Ü + 1 L	Baake	mündl. Prüfung (MP)	Ja		jw	
Erwärmung und Kühlung in der Elektrotechnik	5	4 SWS = 2 V + 1 Ü + 1 L	Baake	mündl. Prüfung (MP)	Ja		js	
Erwärmung und Kühlung in der Elektrotechnik	5	4 SWS = 2 V + 1 Ü + 1 L	Baake	mündl. Prüfung (MP)	Ja		js	
Erwärmung und Kühlung in der Elektrotechnik	5	4 SWS = 2 V + 1 Ü + 1 L	Baake	mündl. Prüfung (MP)	Ja		js	
Ethische Aspekte des Ingenieurberufs	1	1 SWS = 1 V	Preißler	Seminarleistung (SE)	Nein	3875	jw	-
Fachpraktikum	20	20 SWS = 20 P	N.N.	noch nicht festgelegt	Nein		b	
Flugtriebwerke	5	3 SWS = 2 V + 1 Ü	Herbst	Klausur (min)	Ja		js	empfohlen: Strömungsmechanik II, Strömungsmaschinen I, Thermodynamik
Flugtriebwerke	5	3 SWS = 2 V + 1 Ü	Herbst	Klausur (min)	Ja		js	empfohlen: Strömungsmechanik II, Strömungsmaschinen I, Thermodynamik
Gemisch- und Prozessthermodynamik	5	5 SWS = 2 V + 2 Ü + 1 L	Kabelac	mündl. Prüfung (MP)	Ja		jw	Thermodynamik I und II
Gemisch- und Prozessthermodynamik	5	5 SWS = 2 V + 2 Ü + 1 L	Kabelac	mündl. Prüfung (MP)	Ja		jw	Thermodynamik I und II
Gemisch- und Prozessthermodynamik	5	5 SWS = 2 V + 2 Ü + 1 L	Kabelac	mündl. Prüfung (MP)	Ja		jw	Thermodynamik I und II
Geregelte Netzumrichter	5	4 SWS = 2 V + 1 Ü + 1 L	Mertens, Kučka	mündl. Prüfung (MP)	Ja		jw	Leistungselektronik I oder vergleichbare Vorkenntnisse aus anderen Studiengängen; empfohlen: Regelungstechnik I, Leistungselektronik II
Geregelte Netzumrichter	5	4 SWS = 2 V + 1 Ü + 1 L	Mertens, Kučka	mündl. Prüfung (MP)	Ja		jw	Leistungselektronik I oder vergleichbare Vorkenntnisse aus anderen Studiengängen; empfohlen: Regelungstechnik I, Leistungselektronik II

Lehrveranstaltung	LP	SWS	Prüfer	Prüfung	Note	PNr	Frq	Vorkenntnisse
Geregelte Netzumrichter	5	4 SWS = 2 V + 1 Ü + 1 L	Mertens, Kučka	mündl. Prüfung (MP)	Ja		jw	Leistungselektronik I oder vergleichbare Vorkenntnisse aus anderen Studiengängen; empfohlen: Regelungstechnik I, Leistungselektronik II
Geschichte der Elektrotechnik und Informationstechnik	3	2 SWS = 2 V	Mathis	Hausarbeit (HA)	Nein	3725	jw	Grundkenntnisse der Elektrotechnik (Schulkenntnisse genügen)
Gestaltung nachhaltiger Energiesysteme	5	4 SWS = 2 V + 1 Ü + 1 L	Niepelt	mündl. Prüfung (MP)	Ja		jw	
Großes Projekt: Elektrische Energiespeichersysteme	8	8 SWS = 8 P	Hanke- Rauschenbach	Projektarbeit (P)	Nein		b	nach Absprache
Großes Projekt: Elektrische Energieversorgung	8	8 SWS = 8 P	Hofmann	Projektarbeit (P)	Nein		b	nach Absprache
Großes Projekt: Elektrische Maschinen und Antriebssysteme	8	8 SWS = 8 P	Ponick	Projektarbeit (P)	Nein		b	nach Absprache
Großes Projekt: Elektroprozesstechnik	8	8 SWS = 8 P	Baake	Projektarbeit (P)	Nein		b	nach Absprache
Großes Projekt: Hochspannungstechnik und Asset Management	8	8 SWS = 8 P	Werle	Projektarbeit (P)	Nein		b	nach Absprache
Großes Projekt: Kraftwerkstechnik und Wärmeübertragung	8	8 SWS = 8 P	Scharf	Projektarbeit (P)	Nein		b	nach Absprache
Großes Projekt: Leistungselektronik und Antriebsregelung	8	8 SWS = 8 P	Mertens	Projektarbeit (P)	Nein		b	nach Absprache
Großes Projekt: Regelungstechnik	8	8 SWS = 8 P	Müller	Projektarbeit (P)	Nein		b	nach Absprache
Großes Projekt: Windenergie	8	8 SWS = 8 P	Reuter, Beer, Balzani, Scheffler	Projektarbeit (P)	Nein		b	nach Absprache
Grundlagen der Turbomaschinen	5	4 SWS = 2 V + 1 Ü + 1 P	Seume	Klausur (min)	Ja		jw	Zwingend: Thermodynamik und Strömungsmechanik I; Empfohlen: Strömungsmechanik II
Grundlagen der Turbomaschinen	5	4 SWS = 2 V + 1 Ü + 1 P	Seume	Klausur (min)	Ja		jw	Zwingend: Thermodynamik und Strömungsmechanik I; Empfohlen: Strömungsmechanik II

Lehrveranstaltung	LP	SWS	Prüfer	Prüfung	Note	PNr	Frq	Vorkenntnisse
Grundlagen der Turbomaschinen	5	4 SWS = 2 V + 1 Ü + 1 P	Seume	Klausur (min)	Ja		jw	Zwingend: Thermodynamik und Strömungsmechanik I; Empfohlen: Strömungsmechanik II
Grundlagen der Turbomaschinen	5	4 SWS = 2 V + 1 Ü + 1 P	Seume	Klausur (min)	Ja		jw	Zwingend: Thermodynamik und Strömungsmechanik I; Empfohlen: Strömungsmechanik II
Grundlagen und Rechenmethoden der elektrischen Energiewirtschaft	5	4 SWS = 2 V + 1 Ü + 1 L	Kranz	mündl. Prüfung (MP)	Ja		js	keine
Grundlagen und Rechenmethoden der elektrischen Energiewirtschaft	5	4 SWS = 2 V + 1 Ü + 1 L	Kranz	mündl. Prüfung (MP)	Ja		js	keine
Grundlagen und Rechenmethoden der elektrischen Energiewirtschaft	5	4 SWS = 2 V + 1 Ü + 1 L	Kranz	mündl. Prüfung (MP)	Ja		js	keine
Gründungspraxis für Technologie Start-ups	5	4 SWS = 2 V + 2 Ü	Seel	Klausur (120 min)	Nein	3728	js	keine
Hochspannungsgeräte l	5	4 SWS = 2 V + 1 Ü + 1 L	Werle	mündl. Prüfung (MP)	Ja		jw	Hochspannungstechnik
Hochspannungsgeräte l	5	4 SWS = 2 V + 1 Ü + 1 L	Werle	mündl. Prüfung (MP)	Ja		jw	Hochspannungstechnik
Hochspannungsgeräte l	5	4 SWS = 2 V + 1 Ü + 1 L	Werle	mündl. Prüfung (MP)	Ja		jw	Hochspannungstechnik
Hochspannungsgeräte II	5	4 SWS = 2 V + 1 Ü + 1 L	Werle	mündl. Prüfung (MP)	Ja		js	Hochspannnungstechnik I/II Hochspannungsgeräte I (empfohlen)
Hochspannungsgeräte II	5	4 SWS = 2 V + 1 Ü + 1 L	Werle	mündl. Prüfung (MP)	Ja		js	Hochspannnungstechnik I/II Hochspannungsgeräte I (empfohlen)
Hochspannungsgeräte II	5	4 SWS = 2 V + 1 Ü + 1 L	Werle	mündl. Prüfung (MP)	Ja		js	Hochspannnungstechnik I/II Hochspannungsgeräte I (empfohlen)
Hochspannungstechnik II	5	4 SWS = 2 V + 1 Ü + 1 L	Werle	mündl. Prüfung (MP)	Ja		jw	Hochspannungstechnik I
Hochspannungstechnik II	5	4 SWS = 2 V + 1 Ü + 1 L	Werle	mündl. Prüfung (MP)	Ja		jw	Hochspannungstechnik I
Hochspannungstechnik II	5	4 SWS = 2 V + 1 Ü + 1 L	Werle	mündl. Prüfung (MP)	Ja		jw	Hochspannungstechnik I

Lehrveranstaltung	LP	SWS	Prüfer	Prüfung	Note	PNr	Frq	Vorkenntnisse
Hochspannungstechnik II	5	4 SWS = 2 V + 1 Ü + 1 L	Werle	mündl. Prüfung (MP)	Ja		jw	Hochspannungstechnik I
Industrielle Elektrowärme	5	4 SWS = 2 V + 1 Ü + 1 L	Baake	mündl. Prüfung (MP)	Ja		js	
Industrielle Elektrowärme	5	4 SWS = 2 V + 1 Ü + 1 L	Baake	mündl. Prüfung (MP)	Ja		js	
Industrielle Elektrowärme	5	4 SWS = 2 V + 1 Ü + 1 L	Baake	mündl. Prüfung (MP)	Ja		js	
Innovationsmanagement für Ingenieure	3	2 SWS = 2 V	Fricke	mündl. Prüfung (MP)		3135	jw	
Interdisziplinäres Projekt	20	20 SWS = 20 P	N.N.	Projektarbeit (P)	Nein			
Kabel in der elektrischen Energieversorgung	5	4 SWS = 2 V + 2 Ü	Stemmle	mündl. Prüfung (MP)	Ja		js	Benötigte Vorkenntnisse sind die Vorlesungsinhalte aus "Grundlagen der Elektrischen Energieversorgung". Wünschenswerte Vorkenntnisse sind die Vorlesungsinhalte aus "Elektrische Energieversorgung 1".
Kabel in der elektrischen Energieversorgung	5	4 SWS = 2 V + 2 Ü	Stemmle	mündl. Prüfung (MP)	Ja		js	Benötigte Vorkenntnisse sind die Vorlesungsinhalte aus "Grundlagen der Elektrischen Energieversorgung". Wünschenswerte Vorkenntnisse sind die Vorlesungsinhalte aus "Elektrische Energieversorgung 1".
Kleines Projekt: Elektrische Energiespeichersysteme	4	4 SWS = 4 P	Hanke- Rauschenbach	Projektarbeit (P)	Nein		Ь	nach Absprache
Kleines Projekt: Elektrische Energieversorgung	4	4 SWS = 4 P	Hofmann	Projektarbeit (P)	Nein		b	nach Absprache
Kleines Projekt: Elektrische Maschinen und Antriebssysteme	4	4 SWS = 4 P	Ponick	Projektarbeit (P)	Nein		b	nach Absprache
Kleines Projekt: Elektroprozesstechnik	4	4 SWS = 4 P	Baake	Projektarbeit (P)	Nein		b	nach Absprache

Lehrveranstaltung	LP	SWS	Prüfer	Prüfung	Note	PNr	Frq	Vorkenntnisse
Kleines Projekt: Hochspannungstechnik und Asset Management	4	4 SWS = 4 P	Werle	Projektarbeit (P)	Nein		b	nach Absprache
Kleines Projekt: Leistungselektronik und Antriebsregelung	4	4 SWS = 4 P	Mertens	Projektarbeit (P)	Nein		b	nach Absprache
Kleines Projekt: Regelungstechnik	4	4 SWS = 4 P	Müller	Projektarbeit (P)	Nein		b	nach Absprache
Kleines Projekt: Windenergie	4	4 SWS = 4 P	Balzani, Scheffler, Beer, Reuter	Projektarbeit (P)	Nein		j	nach Absprache
Komponenten der Hochspannungsübertragung und deren Isolierstoffe	5	4 SWS = 3 V + 1 P	Werle, Pöhler	mündl. Prüfung (MP)	Ja		js	Hilfreich: Hochspannungstechnik I / II
Labor: Computer Vision für medizinische und industrielle Anwendungen	4	4 SWS = 4 L	Rosenhahn	Laborübung (LÜ)	Nein		jw	Programmierkenntnisse (notwendig). Ergänzende Vorlesungen: Computer Vision, Bildverarbeitung, Maschinelles Lernen
Labor: Elektrische Energieversorgung A	4	4 SWS = 4 L	Hofmann	Laborübung (LÜ)	Nein		b	Das Labor setzt auf die in der Lehrveranstaltung Elektrische Energieversorgung I vermittelten Modulinhalte auf und unterfüttert die Modulinhalte anhand von praxisrelevanten Beispielen. Die mathematische Beschreibung und Parametrisierung der Betriebsmittel (Generatoren, Motoren, Ersatznetze, Leitungen, Transformatoren, Drosselspulen, Kondensatoren) in symmetrischen Komponenten sowie die Vernetzung in symmetrischen und unsymmetrischen Drehstromsystemen sind notwendige Voraussetzungen für die Durchführung des Labors.
Labor: Elektrowärme I	4	4 SWS = 4 L	Baake	Laborübung (LÜ)	Nein		b	
Labor: Energieeffiziente Mikroelektronik	4	4 SWS = 4 L	Wicht	Laborübung (LÜ)	Nein		jw	notwendig: Halbleiterschaltungstechnik, empfohlen: Mixed-Signal-Schaltungen, Power Management, Labor Schaltungsentwurf

Lehrveranstaltung	LP	SWS	Prüfer	Prüfung	Note	PNr	Frq	Vorkenntnisse
Labor: Energieversorgung/ Hochspannungstechnik	4	4 SWS = 4 L	Werle, Hofmann	Laborübung (LÜ)	Nein		b	Das Labor setzt auf die in der Lehrveranstaltung Elektrische Energieversorgung I und II vermittelten Modulinhalte auf und unterfüttert die Modulinhalte anhand von praxisrelevanten Beispielen. Die mathematische Beschreibung und Parametrisierung der Betriebsmittel (Generatoren, Motoren, Ersatznetze, Leitungen, Transformatoren, Drosselspulen, Kondensatoren) in symmetrischen Komponenten sowie die Vernetzung in symmetrischen und unsymmetrischen Drehstromsystemen sind notwendige Voraussetzungen für die Durchführung des Labors.
Labor: FPGA-Entwurfstechnik	4	4 SWS = 4 L	Blume	Laborübung (LÜ)	Nein		jw	Empfohlen: Digitalschaltungen der Elektronik (für ET–Studierende, Grundlagen digitaler Systeme (für Informatiker)
Labor: Halbleitertechnologie	4	4 SWS = 4 L	Krügener	Laborübung (LÜ)	Nein		jw	Halbleitertechnologie (3408), Grundlagen der Halbleiterbauelemente (22)
Labor: Hochspannungstechnik	4	4 SWS = 4 L	Werle	Laborübung (LÜ)	Nein		jw	Hochspannungstechnik I
Labor: Maschinelles Lernen für Künstliche Intelligenz in Spielen	4	4 SWS = 4 L	Rosenhahn	Laborübung (LÜ)	Nein		jw	Die Vorlesung Maschinelles Lernen und grundlegende Kenntnisse in Python sind von Vorteil, aber nicht zwingend erforderlich.
Labor: Mechatronik II	4	4 SWS = 4 L	Seel	Laborübung (LÜ)	Nein		jw	Grundkenntnisse der Elektrotechnik, Regelungstechnik und Mechanik
Leistungselektronik II	5	4 SWS = 2 V + 1 Ü + 1 L	Mertens	Klausur (90 min)	Ja		js	Leistungselektronik I oder entsprechende Kenntnisse und Kompetenzen
Leistungselektronik II	5	4 SWS = 2 V + 1 Ü + 1 L	Mertens	Klausur (90 min)	Ja		js	Leistungselektronik I oder entsprechende Kenntnisse und Kompetenzen
Leistungselektronik II	5	4 SWS = 2 V + 1 Ü + 1 L	Mertens	Klausur (90 min)	Ja		js	Leistungselektronik I oder entsprechende Kenntnisse und Kompetenzen

Lehrveranstaltung	LP	SWS	Prüfer	Prüfung	Note	PNr	Frq	Vorkenntnisse
Leistungselektronik II	5	4 SWS = 2 V + 1 Ü + 1 L	Mertens	Klausur (90 min)	Ja		js	Leistungselektronik l oder entsprechende Kenntnisse und Kompetenzen
Leistungselektronik II	5	4 SWS = 2 V + 1 Ü + 1 L	Mertens	Klausur (90 min)	Ja		js	Leistungselektronik I oder entsprechende Kenntnisse und Kompetenzen
Leistungselektronik II	5	4 SWS = 2 V + 1 Ü + 1 L	Mertens	Klausur (90 min)	Ja		js	Leistungselektronik l oder entsprechende Kenntnisse und Kompetenzen
Leistungshalbleiter und Ansteuerungen	5	4 SWS = 2 V + 1 Ü + 1 L	Mertens	mündl. Prüfung (MP)	Ja		jw	Notwendig: Leistungelektronik I, Halbleiter- Grundlagen z.B. aus Werkstoffkunde.
Leistungshalbleiter und Ansteuerungen	5	4 SWS = 2 V + 1 Ü + 1 L	Mertens	mündl. Prüfung (MP)	Ja		jw	Notwendig: Leistungelektronik I, Halbleiter- Grundlagen z.B. aus Werkstoffkunde.
Leistungshalbleiter und Ansteuerungen	5	4 SWS = 2 V + 1 Ü + 1 L	Mertens	mündl. Prüfung (MP)	Ja		jw	Notwendig: Leistungelektronik I, Halbleiter- Grundlagen z.B. aus Werkstoffkunde.
Masterarbeit mit Kolloquium [EN]	30	0 SWS =	N.N.	Projektarbeit (P)	Ja	9998	b	 zur Anmeldung der Masterarbeit muss eine Mindestleistungspunktegrenze von 80 LP erreicht sein. Über Ausnahmen entscheidet bei Vorliegen wichtiger Gründe per Antrag der Prüfungsausschuss: Studierende können auch ohne die vollständige Erfüllung der Pflichtmodule nach Vorlage von 80 LP formlos eine Zulassung zur Abschlussarbeit beim Prüfungsausschuss beantragen.
Mehrphasenströmungen	5	3 SWS = 2 V + 1 Ü	Glasmacher	Klausur (90 min)	Ja		js	Transportprozesse in der Verfahrenstechnik I und II Strömungsmechanik I Thermodynamik I
Mobilitätsfenster	20	20 SWS = 20 P	N.N.	Nachweis	Nein		Ь	
Model Predictive Control	5	4 SWS = 2 V + 1 Ü + 1 L	Müller	mündl. Prüfung (MP)	Ja		js	Regelungstechnik I Regelungstechnik II
Nachhaltige Verbrennungstechnik	5	4 SWS = 2 V + 1 Ü + 1 L	Dinkelacker	Klausur (90 min)	Ja		js	Empfohlen: Grundbegriffe der Thermodynamik

Lehrveranstaltung	LP	SWS	Prüfer	Prüfung	Note	PNr	Frq	Vorkenntnisse
Nachhaltige Verbrennungstechnik	5	4 SWS = 2 V + 1 Ü + 1 L	Dinkelacker	Klausur (90 min)	Ja		js	Empfohlen: Grundbegriffe der Thermodynamik
Numerische Strömungsmechanik I- Grundlagen	5	3 SWS = 2 V + 1 Ü	Wein	Klausur (90 min)	Ja		jw	Zwingend: Strömungsmechanik I; Empfohlen: Strömungsmechanik II;Wärmeübertragung I
Numerische Strömungsmechanik I- Grundlagen	5	3 SWS = 2 V + 1 Ü	Wein	Klausur (90 min)	Ja		jw	Zwingend: Strömungsmechanik I; Empfohlen: Strömungsmechanik II;Wärmeübertragung l
Numerische Strömungsmechanik I- Grundlagen	5	3 SWS = 2 V + 1 Ü	Wein	Klausur (90 min)	Ja		jw	Zwingend: Strömungsmechanik I; Empfohlen: Strömungsmechanik II;Wärmeübertragung l
Numerische Strömungsmechanik I- Grundlagen	5	3 SWS = 2 V + 1 Ü	Wein	Klausur (90 min)	Ja		jw	Zwingend: Strömungsmechanik I; Empfohlen: Strömungsmechanik II;Wärmeübertragung l
Nutzung von Solarenergie	5	4 SWS = 2 V + 2 Ü	Kleiss	Klausur (90 min)	Ja		bw+s	Keine
Nutzung von Solarenergie	5	4 SWS = 2 V + 2 Ü	Kleiss	Klausur (90 min)	Ja		bw+s	Keine
Optimierung technischer Systeme	5	4 SWS = 2 V + 1 Ü + 1 P	Leveringhaus	mündl. Prüfung (MP)	Ja		js	Aufbau, Wirkungsweise und Modellierung von Komponenten elektrischer Anlagen und Systeme
Optimierung technischer Systeme	5	4 SWS = 2 V + 1 Ü + 1 P	Leveringhaus	mündl. Prüfung (MP)	Ja		js	Aufbau, Wirkungsweise und Modellierung von Komponenten elektrischer Anlagen und Systeme
Optimierung technischer Systeme	5	4 SWS = 2 V + 1 Ü + 1 P	Leveringhaus	mündl. Prüfung (MP)	Ja		js	Aufbau, Wirkungsweise und Modellierung von Komponenten elektrischer Anlagen und Systeme
Optimierung technischer Systeme	5	4 SWS = 2 V + 1 Ü + 1 P	Leveringhaus	mündl. Prüfung (MP)	Ja		js	Aufbau, Wirkungsweise und Modellierung von Komponenten elektrischer Anlagen und Systeme
Patentrecht für die Ingenieurspraxis	3	4 SWS = 2 V + 1 Ü + 1 P	Schiller	Klausur (90 min)	Nein	3729	jw	
Planung und Errichtung von Windparks	5	4 SWS = 2 V + 2 Ü	Balzani	VbP (SE)	Ja	5636	jw	Windenergietechnik I

Lehrveranstaltung	LP	SWS	Prüfer	Prüfung	Note	PNr	Frq	Vorkenntnisse
Planung und Errichtung von Windparks	5	4 SWS = 2 V + 2 Ü	Balzani	VbP (SE)	Ja	5636	jw	Windenergietechnik l
Planung und Errichtung von Windparks	5	4 SWS = 2 V + 2 Ü	Balzani	VbP (SE)	Ja	5636	jw	Windenergietechnik I
Planung und Führung von elektrischen Netzen	5	4 SWS = 2 V + 1 Ü + 1 L	Hofmann	mündl. Prüfung (MP)	Ja		jw	Elektrische Energieversorgung I
Planung und Führung von elektrischen Netzen	5	4 SWS = 2 V + 1 Ü + 1 L	Hofmann	mündl. Prüfung (MP)	Ja		jw	Elektrische Energieversorgung I
Planung und Führung von elektrischen Netzen	5	4 SWS = 2 V + 1 Ü + 1 L	Hofmann	mündl. Prüfung (MP)	Ja		jw	Elektrische Energieversorgung I
Power Electronics	5	4 SWS = 2 V + 1 Ü + 1 L	Mertens	mündl. Prüfung (MP)	Ja	1610	jw	two terms of the international master program Energy Technology
Power Plant Engineering	5	4 SWS = 2 V + 1 Ü + 1 P	Scharf	mündl. Prüfung (MP)	Ja	1910	js	Thermodynamics I, Thermodynamics II
Projekt Energy Technology – Elektrische Energiespeichersysteme	5	5 SWS = 5 P	N.N.	Projektarbeit (P)	Nein		b	
Projekt Energy Technology – Elektrische Energieversorgung	5	5 SWS = 5 P	N.N.	Projektarbeit (P)	Nein		b	
Projekt Energy Technology – Elektrische Maschinen und Antriebssysteme	5	5 SWS = 5 P	N.N.	Projektarbeit (P)	Nein		b	
Projekt Energy Technology – Hochspannungstechnik und Asset Management	5	5 SWS = 5 P	N.N.	Projektarbeit (P)	Nein		b	
Projekt Energy Technology – Leistungselektronik und Antriebsregelung	5	5 SWS = 5 P	N.N.	Projektarbeit (P)	Nein		b	
Projekt Energy Technology - Thermodynamik	5	5 SWS = 5 P	N.N.	Projektarbeit (P)	Nein		b	
Regelung elektrischer Drehfeldmaschinen	5	4 SWS = 2 V + 1 Ü + 1 L	Mertens	mündl. Prüfung (MP)	Ja		js	Notwendig: Grundlagen der elektromagnetischen Energiewandlung (Elektrotechniker) oder Elektrische Antriebe (Mechatroniker) Empfohlen: Leistungselektronik I

Lehrveranstaltung	LP	SWS	Prüfer	Prüfung	Note	PNr	Frq	Vorkenntnisse
Regelung elektrischer Drehfeldmaschinen	5	4 SWS = 2 V + 1 Ü + 1 L	Mertens	mündl. Prüfung (MP)	Ja		js	Notwendig: Grundlagen der elektromagnetischen Energiewandlung (Elektrotechniker) oder Elektrische Antriebe (Mechatroniker) Empfohlen: Leistungselektronik I
Regelung elektrischer Drehfeldmaschinen	5	4 SWS = 2 V + 1 Ü + 1 L	Mertens	mündl. Prüfung (MP)	Ja		js	Notwendig: Grundlagen der elektromagnetischen Energiewandlung (Elektrotechniker) oder Elektrische Antriebe (Mechatroniker) Empfohlen: Leistungselektronik I
Regelungstechnik II	5	4 SWS = 2 V + 1 Ü + 1 L	Müller	Klausur (120 min)	Ja		js	Regelungstechnik I
Regelungstechnik II	5	4 SWS = 2 V + 1 Ü + 1 L	Müller	Klausur (120 min)	Ja		js	Regelungstechnik l
Regelungstechnik II	5	4 SWS = 2 V + 1 Ü + 1 L	Müller	Klausur (120 min)	Ja		js	Regelungstechnik l
Regelungstechnik II	5	4 SWS = 2 V + 1 Ü + 1 L	Müller	Klausur (120 min)	Ja		js	Regelungstechnik l
Rotoraerodynamik	5	4 SWS = 2 V + 2 Ü	Raffel	Klausur (min)	Ja		jw	empfohlen: Strömungsmechanik II, Englischkenntnisse
Strömungsmechanik II	5	3 SWS = 2 V + 1 Ü	Wolf	Klausur (90 min)	Ja		jw	Strömungsmechanik l
Strömungsmechanik II	5	3 SWS = 2 V + 1 Ü	Wolf	Klausur (90 min)	Ja		jw	Strömungsmechanik I
Strömungsmechanik II	5	3 SWS = 2 V + 1 Ü	Wolf	Klausur (90 min)	Ja		jw	Strömungsmechanik l
Strömungsmechanik II	5	3 SWS = 2 V + 1 Ü	Wolf	Klausur (90 min)	Ja		jw	Strömungsmechanik I
Studium Generale – Lehrveranstaltungen aus dem Lehrangebot der LUH		0 SWS =	N.N.	noch nicht festgelegt	Nein		Ь	
Studium Generale Energy Technology	5	4 SWS = 2 V + 2 Ü	N.N.	Nachweis	Nein		b	
Studium Generale Energy Technology	5	4 SWS = 2 V + 2 Ü	N.N.	Nachweis	Nein		b	
Sustainability Assessment I	5	3 SWS = 3 V	Endres	Projektarbeit (P)	Ja	2110	jw	

Lehrveranstaltung	LP	SWS	Prüfer	Prüfung	Note	PNr	Frq	Vorkenntnisse
Sustainable Combustion	5	4 SWS = 2 V + 1 Ü + 1 L	Dinkelacker	Klausur (90 min)	Ja	1110	jw	Basic knowledge in Thermodynamics and in Fundamentals of Chemistry
Systeme zur zukünftigen Energieoptimierung und -vermarktung	3	2 SWS = 2 V	Sturm	mündl. Prüfung (MP)	Nein	3358	jw	
Technikrecht	5	3 SWS = 3 SE	von Zastrow	Klausur (120 min)	Nein	3732	Ь	Die vorherige Teilnahme an der Veranstaltung "Einführung in das Recht für Ingenieure" wird empfohlen.
Transformation des Energiesystems	1	2 SWS = 2 V	Hanke- Rauschenbach	Nachweis	Nein	3883	b	keine
Transportprozesse in der Verfahrenstechnik I	5	3 SWS = 2 V + 1 Ü	Glasmacher	Klausur (90 min)	Ja		jw	Thermodynamik I; Strömungsmechanik
Triebstränge in Windenergieanlagen	5	4 SWS = 2 V + 1 Ü + 1 L	Marian	Klausur (90 min)			jw	Grundlagen Maschinenbau
Triebstränge in Windenergieanlagen	5	4 SWS = 2 V + 1 Ü + 1 L	Marian	Klausur (90 min)			jw	Grundlagen Maschinenbau
Tutorium: Elektrorennwagen HorsePower I	4	5 SWS = 5 P	Maier	noch nicht festgelegt	Nein	3825	b	Je nach Themenvergabe. Grundkenntnisse in Englisch.
Tutorium: Student Accelerator Robotics and Automation	2	2 SWS = 2 P	Ortmaier	noch nicht festgelegt	Nein	3864	b	Teilnahme an einem Start-up Lab oder ähnliches Gründungspraxis für Technologie Start-ups
Verbrennungsmotoren I	5	4 SWS = 2 V + 2 Ü	Dinkelacker	Klausur (min)	Ja		jw	Thermodynamik I
Verbrennungsmotoren II – Zukünftige Konzepte	5	4 SWS = 3 V + 1 L	Dinkelacker	mündl. Prüfung (MP)	Ja		js	Verbrennungsmotoren I (zwingend nötig)
Windenergietechnik I	5	4 SWS = 2 V + 2 Ü	Reuter	mündl. Prüfung (MP)	Ja		b	
Windenergietechnik II	5	4 SWS = 2 V + 2 Ü	Balzani	mündl. Prüfung (MP)	Ja		js	Wind Energy Technology I/ Windenergietechnik I
Windenergietechnik II	5	4 SWS = 2 V + 2 Ü	Balzani	mündl. Prüfung (MP)	Ja		js	Wind Energy Technology I/ Windenergietechnik I

Lehrveranstaltung	LP	SWS	Prüfer	Prüfung	Note	PNr	Frq	Vorkenntnisse
Wirkungsweise und Technologie von Silizium-Solarzellen	5	4 SWS = 2 V + 1 Ü + 1 L	Peibst	mündl. Prüfung (MP)	Ja		jw	Empfohlen: Grundlagen der Materialwissenschaften
Wirkungsweise und Technologie von Silizium-Solarzellen	5	4 SWS = 2 V + 1 Ü + 1 L	Peibst	mündl. Prüfung (MP)	Ja		jw	Grundlagen der Halbleiterbauelemente Empfohlen: Grundlagen der Materialwissenschaften
								Grundlagen der Halbleiterbauelemente
Wirkungsweise und Technologie von Silizium-Solarzellen	5	4 SWS = 2 V + 1 Ü + 1 L	Peibst	mündl. Prüfung (MP)	Ja		jw	Empfohlen: Grundlagen der Materialwissenschaften Grundlagen der Halbleiterbauelemente
Wissenschaftliche Methodik und Soft Skills im Ingenieurs- und Forschungsbereich	4	3 SWS = 2 V + 1 Ü	Körner	Seminarleistung (SE)	Nein	3865	b	Diese Veranstaltung richtet sich an alle interessierten Studierenden verschiedener naturwissenschaftlicher Fachrichtungen, die schon an mindestens einem Projekt (mit)gearbeitet haben.
Wärmepumpen und Kälteanlagen	5	4 SWS = 2 V + 1 Ü + 1 L	Kabelac	Klausur (min)	Ja		jw	Thermodynamik I und Thermodynamik II
Wärmepumpen und Kälteanlagen	5	4 SWS = 2 V + 1 Ü + 1 L	Kabelac	Klausur (min)	Ja		jw	Thermodynamik I und Thermodynamik II
Wärmepumpen und Kälteanlagen	5	4 SWS = 2 V + 1 Ü + 1 L	Kabelac	Klausur (min)	Ja		jw	Thermodynamik I und Thermodynamik II
Wärmepumpen und Kälteanlagen	5	4 SWS = 2 V + 1 Ü + 1 L	Kabelac	Klausur (min)	Ja		jw	Thermodynamik I und Thermodynamik II
Wärmepumpen und Kälteanlagen	5	4 SWS = 2 V + 1 Ü + 1 L	Kabelac	Klausur (min)	Ja		jw	Thermodynamik I und Thermodynamik II
Zustandsdiagnose und Asset Management	5	4 SWS = 2 V + 1 Ü + 1 L	Werle	Klausur (120 min)	Ja		jw	Hochspannungstechnik
Zustandsdiagnose und Asset Management	5	4 SWS = 2 V + 1 Ü + 1 L	Werle	Klausur (120 min)	Ja		jw	Hochspannungstechnik

Lehrveranstaltung	LP	SWS	Prüfer	Prüfung	Note	PNr	Frq	Vorkenntnisse
Zustandsdiagnose und Asset Management	5	4 SWS = 2 V + 1 Ü + 1 L	Werle	Klausur (120 min)	Ja		jw	Hochspannungstechnik
Zustandsdiagnose und Asset Management	5	4 SWS = 2 V + 1 Ü + 1 L	Werle	Klausur (120 min)	Ja		jw	Hochspannungstechnik

Abkürzungen

- LP = Leistungspunkte
- SWS = Semesterwochenstunden
- SWS = Semesterwochenstunden (V = Vorlesung, Ü = Übung, L = Labor, PR = Projekt, SE = Seminar)
- (unter Prüfung:) z.B. Klausur 90 = Klausur von 90 Minuten
- PNr = Prüfungsnummer
- Frq = Frequenz (b = jedes Semester, j = jährlich, 2j = zweijährlich, u=unregelmäßig, 1 = einmalig, w = im Wintersemester, s = im Sommersemester)

Stand: 19.09.2024